Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Vibration Torque Interception using Multi-Functional Electromagnetic Coupling in a HEV Drive Line

2016-04-05
2016-01-1181
In the present paper, we introduce a drivetrain system using an electromagnetic coupling for hybrid electric vehicles, and propose a new control concept of vibration torque interception. The electromagnetic coupling is an electric machine that is composed of a pair of rotors, and electromagnetic torque acts mutually between the rotors. In the drivetrain system, the electromagnetic coupling works as a torque transmission device with a rotational-speed-converting function. We demonstrate that, by using this control, the electromagnetic coupling also works as a damping device that intercepts the vibration torque of the internal combustion engine, while transmitting the smooth torque to its drive line. Using a model of a two-inertia resonance system, a control system is designed such that a transfer function representing input-to-output torque is shaped in the frequency domain.
Technical Paper

Verification of Fuel Efficiency Improvement by Application of Highly Effective Silicon Carbide Power Semiconductor to HV Inverter

2016-04-05
2016-01-1230
A prototype power control unit (PCU) was manufactured using silicon carbide (SiC) power semiconductors (diodes and transistors), which have low power loss when switching on and off. This PCU was installed in a hybrid vehicle (HV) and driven on a test course and chassis dynamometer. The test results confirmed a fuel efficiency improvement of about 5 percent.
Technical Paper

Verification Test Results of Wireless Charging System

2016-04-05
2016-01-1155
Toyota Motor Corporation (TMC) began a wireless charging field test in February 2014. A wireless charging system was installed at the residences of test subjects with the aim of identifying issues related to convenience and installation in daily usage. The test vehicle was fabricated by installing a wireless charging system into a Prius PHV (Plug-in Hybrid Vehicle). The installed system had the same charging power as the cable charging system used on the base vehicle, and had a charging time of 1.5 hours. A high-frequency 85 kHz power supply and primary coil were produced for the charging infrastructure. To identify differences in charging behavior, the test subjects were asked to use the cable charging system for the first month before changing to the wireless charging system for two months. Data acquisition was performed by an on-board data logger and through interviews with the test subjects.
Technical Paper

Vehicle Surge Reduction Technology during Towing in Parallel HEV Pickup Truck

2022-03-29
2022-01-0613
This paper proposes a technology to reduce vehicle surge during towing that utilizes motors and shifting to help ensure comfort in a parallel HEV pickup truck. Hybridization is one way to reduce fuel consumption and help realize carbon neutrality. Parallel HEVs have advantages in the towing, hauling, and high-load operations often carried out by pickup trucks, compared to other HEV systems. Since the engine, motor, torque converter, and transmission are connected in series in a parallel HEV, vehicle surge may occur when the lockup clutch is engaged to enhance fuel efficiency, similar to conventional powertrains. Vehicle surge is a low-frequency vibration phenomenon. In general, the source is torque fluctuation caused by the engine and tires, with amplification provided by first-order torsional driveline resonance, power plant resonance, suspension resonance, and cabin resonance. This vibration is amplified more during towing.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Vegetable Oil Hydrogenating Process for Automotive Fuel

2007-07-23
2007-01-2030
From the viewpoint of primary energy diversification and CO2 reduction, interests of using Biomass Fuel are rising. Some kinds of FAME (Fatty Acid Methyl Ester), which are obtained from oil fats like vegetable oil using transesterification reaction with methanol, are getting Palm Oilpular for bio-diesel recently. In this study, we have conducted many experiments of palm oil hydrogenations using our pilot plants, and checked the reactivity and the pattern of product yields. As a result, we figured out that the hydrocarbon oil equivalent to the conventional diesel fuel can be obtained from vegetable oils in good yield under mild hydrogenation conditions. Moreover, as a result of various evaluations for the hydrogenated palm oil (oxidation stability, lowtemperature flow property, LCA, etc.), we found that the hydrogenated palm oil by our technology has performances almost equivalent to conventional diesel fuel.
Technical Paper

Utilization of Motor-Driven Gearshift System

1999-03-01
1999-01-0745
Recently, for passenger cars, hand operated gearshift systems have been made available by some manufacturers for the purpose of easy gearshift operation and to make driving more fun. For adapting such a system to an ATV (All Terrain Vehicle), which is used mainly for agriculture and leisure, the whole system should be compact and lightweight. It is also necessary for the clutch to be engaged properly under various running conditions. This gearshift system performs both engaging and disengaging of the clutch and moving the gearshift spindle with one motor. Since this system is controlled by calculated engine speed, vehicle speed and gear position, suitable gear shifting is realized under various running conditions. For optimal clutch control, there is a reversing point for the decreasing and increasing of engine speed for each gearshift. This accelerates the clutch engagement speed and makes quick returning of the gearshift spindle.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Toyota's New Shift-by-Wire System for Hybrid Vehicles

2004-03-08
2004-01-1112
In today's motorized society, various automotive technologies continue to evolve every day. Amid this trend, a new concept with respect to automatic transaxle gear-shifting has been developed. In order to materialize a new concept for shifting operation with a universal design in mind, a system has been developed: a shift-by-wire system developed specifically for hybrid vehicles. The greatest advantage of this new system is the lack of constraints associated with the conventional mechanical linkage to the transaxle. This allows freedom of design for the gear selection module. A revolutionary improvement in the ease of shifting has been realized by taking full advantage of this design freedom. In addition, this system contributes to an innovative design. For improved ease of operation, the operation force of the shift lever of this system has been dramatically reduced. For parking, the driver can engage the parking mechanism of the transaxle at the touch of a switch.
Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2011-11-04
In the pursuit of a sustainable transportation systems, Toyota is considering a comprehensive approach pursuing multiple advanced technologies to address three primary issues: GHG, Petroleum Use, and Air Quality. Vehicles must be ready for and affordable to the mass market to provide the customer choices to meet their transportation needs whether it is EV's, Hybrids, Plug-In Hybrids or Fuel Cell Hydrogen Hybrids. Our studies have shown that EVs have the potential to provide significant improvements in energy utilization especially combined with other advanced technologies. Toyota believes that a combination of these technolgies will provide complementary solution that enables a sustainable transportation system. Presenter Takehito Yokoo, Toyota Motor Corporation
Technical Paper

Three-Dimension Deposited Soot Distribution Measurement in Silicon Carbide Diesel Particulate Filters by Dynamic Neutron Radiography

2011-04-12
2011-01-0599
Exhaust emissions are well known to have adverse impacts on human health. Studies have demonstrated that there is an association between ambient particulate matter (PM) levels and various harmful cardiopulmonary conditions. Soot exhaust from diesel engines can be a significant contributor to airborne pollutants. A key component in PM level control for a diesel engine is a diesel particulate filter (DPF). This device traps soot while allowing other exhaust gases to pass unhindered. However, the performance of diesel particulate filters can change with increasing soot loadings and thus may require regeneration or replacement. Improved understanding of diesel particulate filters is dependent upon the knowledge of the actual soot loading and the soot distribution within the DPF. Neutron radiography (NR) has been identified as an effective means of non-destructively identifying hydrogen or carbon adsorbed in PM.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Technical Paper

Theory of Collision Avoidance Capability in Automated Driving Technologies

2018-04-03
2018-01-0044
This paper proposes a theory to analyze the collision avoidance capability of automated driving technologies. The theory gives answers to a fundamental question whether automated vehicles fall into extreme conditions at all rather than another question how a vehicle reacts under extreme conditions (is it as safe as driver?). The theory clarifies the following matters: There are two types of hazards to cause collisions, cognitive hazards and behavioral hazards. Cognitive hazards are handled by controlling the upper limit speed of the automated vehicle including when stopped. There are two methods for handling behavioral hazards, preparation and response. The response known well is the coping method activated when the hazard is detected in the dynamic (operational) level. The preparation is the coping method operating at all time in the semantic (tactical) level.
Technical Paper

The background of Electric Vehicle spread

2011-05-17
2011-39-7218
In recent years, Eeletoric Vehicle attracts attention as the favorite in a next-generation car. Various factors called promotion of the problem of drain of a fossil fuel, global warming, and next-generation industry exist in this background. In this paper, by arranging these factors on many sides and carrying out them considers the directivity to which EV should progress.
Technical Paper

The Power Performance and the Fuel Economy Estimation of HV for Vehicle Concept Planning Using VHDL-AMS Full Vehicle Simulation

2012-04-16
2012-01-1025
In order to reduce CO₂, Electric Vehicles (EV) and Hybrid Vehicles (HV) are effective. Those types of vehicles have powertrains from conventional vehicles. Those new powertrains drastically improve their efficiency from conventional vehicles keeping the same or superior power performance. On the other hand, those vehicles have an issue for thermal energy shortage during warming up process. The thermal energy is very large, and seriously affects the fuel economy for HV and the mileage for EV. In this paper, we propose VHDL-AMS multi-domain simulation technique for the estimation of the vehicle performance at the concept planning stage. The VHDL-AMS is IEEE and IEC standardized language, which supports not only multi-domain (physics) but also encryption. The common modeling language and encryption standard is indispensable for full-vehicle simulation.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Journal Article

The Impact of Diesel and Biodiesel Fuel Composition on a Euro V HSDI Engine with Advanced DPNR Emissions Control

2009-06-15
2009-01-1903
In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
Technical Paper

The Effects on Motorcycle Behavior of the Moment of Inertia of the Crankshaft

1997-02-24
971060
The moment of inertia of the crankshaft cannot be ignored when analyzing the dynamics of a motorcycle. In this research, the tire friction force (calculated by drag and tire side force) was used as an index of the drive performance. The ratio of roll rate and steering torque (here after referred to as a roll rate gain) was used as an index of the cornering performance, and it was analyzed as the influence of the moment of inertia of a crankshaft on the drive performance as well as cornering performance. As a result, the influence on drive performance and cornering performance by the moment of inertia has been found.
Technical Paper

The Effects of Engine Speed and Injection Pressure Transients on Gasoline Direct Injection Engine Cold Start

2002-10-21
2002-01-2745
Results are presented from an experimental study of the effects of engine speed and injection pressure transients on the cold start performance of a gasoline direct injection engine operating on iso-octane. The experiments are performed in an optically-accessible single-cylinder research engine modified for gasoline direct injection operation. In order to isolate the effects of the engine speed and injection pressure transients, three different cold start simulations are used. In the first cold start simulation the engine speed and injection pressure are constant. In the second cold start simulation the injection pressure is constant while the engine speed transient of an actual cold start is simulated. In the third cold start simulation both the engine speed and the injection pressure transients of an actual cold start are simulated.
X