Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Quantitative Fuel Film Distribution Measurement by LIEF Technique and Application to Gasoline Spray

2020-04-14
2020-01-1159
From the point of global and local environment, internal combustion engine is facing the need for significant improvement of exhaust emission. Especially, important is the reduction of unburned hydrocarbon (HC) from fuel film on liner under cold condition. In this study, at first, quantitative fuel film measurement technique by using Laser Induced Exciplex Fluorescence (LIEF) was developed. For the light source, 4th harmonic pulse yttrium aluminum garnet (YAG) laser (266nm) was used. For the tracer, the combination of N,N-Dimethylaniline (DMA) and naphthalene was used and quantitative concentration was decided by calibration test. With LIEF, the distribution of fuel film can be obtained by measuring the fluorescence only from the liquid phase. In order to evaluate the effect of fuel film on exhaust HC emission from engine, the film distribution was measured using quartz glass liner. For the injector, a prototype 6-hole gasoline injector was used.
Technical Paper

Development of CFD Method for Spray Shape Estimation

2016-10-17
2016-01-2198
Computational fluid dynamic (CFD) is widely used to develop engine combustion. Especially the in-cylinder spray calculation is important in order to resolve the issues of direct injection gasoline engines (e.g., particulate matter (PM) and oil dilution caused by fuel wetting on the cylinder walls). Conventional spray calculation methods require fitting based on measurements of spray characteristics such as penetration and droplet diameter (i.e., the Sauter mean diameter (SMD)). Particularly in the case of slit nozzle shapes that widen from the inlet to the outlet to form a fan-shaped spray, fitting the shape of spray is a complex procedure because the flow inside the nozzle is not uniform. In response, a new calculation method has been developed that eliminates the need for spray shape fitting by combining calculations of the Eulerian multiphase and the Lagrangian multiphase.
X