Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ankle Skeletal Injury Predictions Using Anisotropic Inelastic Constitutive Model of Cortical Bone Taking into Account Damage Evolution

2005-11-09
2005-22-0007
The most severe ankle skeletal injury called pilon fractures can cause long term disability and impairment. Based on previous experimental studies, the pilon fractures are regarded as caused by a high-energy compressive force in the ankle joint and affected by a muscular tension force generated by emergency braking. However, quantitative injury criteria for the pilon fractures are still unknown. More accurate prediction of bone fractures in the distal tibia using a FE model of human lower leg can help us know the quantitative injury criteria. Therefore we newly proposed an anisotropic inelastic constitutive model of cortical bone including damage evolution and then implemented it to a FE code, LS-DYNA. The proposed model successfully reproduced most of anisotropy, strain rate dependency, and asymmetry of tension and compression on material and failure properties of human femoral cortical bone.
Technical Paper

A Study of Knee Joint Kinematics and Mechanics using a Human FE Model

2005-11-09
2005-22-0006
Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices.
X