Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Mechanisms of Methanol Fueled Engine

1985-11-11
852199
The wear mechanisms of the methanol engine were studied using dynamometer tests. Formic acid from methanol combustion mixes with the lubricant oil and attacks the metal surfaces. The iso tacho prorissis method was successfully applied to analyze the formic acid content of the used oil. A large amount of condensed water is also formed by methanol combustion and accelerates the wear. Wear can be effectively reduced by shortening lubricant oil change intervals, by using a special oil and by durable surface treatment of engine parts.
Technical Paper

Water Jacket Spacer for Improvement of Cylinder Bore Temperature Distribution

2005-04-11
2005-01-1156
For reduction of fuel consumption, a new device “Water Jacket Spacer” which improves temperature distribution of a cylinder block bore wall was developed. In the case of a conventional cylinder block, coolant flow concentrates at the bottom and middle region of the water jacket. While temperature of the upper bore wall is high (due to high-temperature combustion gas) the temperature of the lower bore wall is low, since its only function is to support the piston. When the developed spacer is inserted into a water jacket, the coolant flow concentrates at the upper part of the jacket. As a result, cooling ability to the upper bore wall was improved and temperature of lower bore wall was increased, thereby reducing fuel consumption.
Technical Paper

Waste Heat Recovery of Passenger Car Using a Combination of Rankine Bottoming Cycle and Evaporative Engine Cooling System

1993-03-01
930880
Rankine bottoming system, which operates on waste heat of engine cooling, has been developped to improve the fuel economy of a passenger car. Evaporative engine cooling system is utilized to obtain high thermal efficiency and simplicity of the Rankine bottoming system. The bottoming system uses HCFC123 as a working fluid, and scroll expander as a power conversion unit. The results indicate that energy recovery, which depends on the ambient temperature, is almost 3 percent of engine output power at ambient temperature of 25°C.
Technical Paper

Verification of Fuel Efficiency Improvement by Application of Highly Effective Silicon Carbide Power Semiconductor to HV Inverter

2016-04-05
2016-01-1230
A prototype power control unit (PCU) was manufactured using silicon carbide (SiC) power semiconductors (diodes and transistors), which have low power loss when switching on and off. This PCU was installed in a hybrid vehicle (HV) and driven on a test course and chassis dynamometer. The test results confirmed a fuel efficiency improvement of about 5 percent.
Technical Paper

Vehicle Surge Reduction Technology during Towing in Parallel HEV Pickup Truck

2022-03-29
2022-01-0613
This paper proposes a technology to reduce vehicle surge during towing that utilizes motors and shifting to help ensure comfort in a parallel HEV pickup truck. Hybridization is one way to reduce fuel consumption and help realize carbon neutrality. Parallel HEVs have advantages in the towing, hauling, and high-load operations often carried out by pickup trucks, compared to other HEV systems. Since the engine, motor, torque converter, and transmission are connected in series in a parallel HEV, vehicle surge may occur when the lockup clutch is engaged to enhance fuel efficiency, similar to conventional powertrains. Vehicle surge is a low-frequency vibration phenomenon. In general, the source is torque fluctuation caused by the engine and tires, with amplification provided by first-order torsional driveline resonance, power plant resonance, suspension resonance, and cabin resonance. This vibration is amplified more during towing.
Technical Paper

Vehicle Behavior Under the Influence of Steering Dynamics by Means of Low Frequency Torque Input

2006-04-03
2006-01-0557
This paper describes and confirms the effect of low frequency sinusoidal steering torque input on vehicle response and steering behavior using vehicle test, analysis with equations of motion and simulations. The vehicle response by low frequency torque input is quite different to the vehicle response by low frequency steer angle input. Steering system parameters such as moment of inertia, damping, friction and power steering assist torque have an effect on low frequency torque input steering system dynamics. The dynamic response of the vehicle with electric power steering (EPS) system, which has a big moment of inertia with electric motor and friction of the reduction gear, is affected by the steering system dynamic properties. The vehicle response by low frequency torque input test has capability for contribute to vehicle evaluation such as steer feel or maneuverability of handling.
Technical Paper

Valve Train Dynamic Analysis and Validation

2004-01-08
2004-01-1457
In order to reduce engine development timing and cost, a numerical calculation has been developed by Toyota Motor Company and Toyota Technical Center to evaluate valve train systems. The goal is to predict valve_bounce speed, valve displacement, hydraulic lash adjuster motion and strain in the rocker arm. The numerical procedure combines finite element model and multi-body dynamic analysis. Normally, strain calculation is a two-step process. In the first step, engineers obtain the excitation from the dynamic analysis. In the second step, engineers use the forcing function from dynamic analysis to calculate strain and stress. The new approach in this paper, using ADAMS, calculates dynamic load and recover strain simultaneously. As the flexibility of the moving part (for example rocker arm) is taken into account in the equations of motion, ADAMS will calculate the modal strain. Based on the modal strain, the strain or stress at any given node(s) can be recovered.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Universal Diesel Engine Simulator (UniDES): 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion

2008-04-14
2008-01-0843
We have developed a novel engine cycle simulation program (UniDES: universal diesel engine simulator) to reproduce the diesel combustion process over a wide range of engine operating parameters, such as the amount of injected fuel, the injection timing, and the EGR ratio. The approach described in this paper employs a zoning model, where the in-cylinder region is divided into up to five zones. We also applied a probability density function (PDF) concept to each zone to consider the effect of spatial non-homogeneities, such as local equivalence ratios and temperature, on the combustion characteristics. We linked this program to the commonly used commercial GT-Power® software (UniDES+GT). As a result, we were able to reproduce transient engine behavior very accurately.
Technical Paper

Universal Diesel Engine Simulator (UniDES) 2nd Report: Prediction of Engine Performance in Transient Driving Cycle Using One Dimensional Engine Model

2013-04-08
2013-01-0881
The aim of this research is to develop the diesel combustion simulation (UniDES: Universal Diesel Engine Simulator) that incorporates multiple-injection strategies and in-cylinder composition changes due to exhaust gas recirculation (EGR), and that is capable of high speed calculation. The model is based on a zero-dimensional (0D) cycle simulation, and represents a multiple-injection strategy using a multi-zone model and inhomogeneity using a probability density function (PDF) model. Therefore, the 0D cycle simulation also enables both high accuracy and high speed. This research considers application to actual development. To expand the applicability of the simulation, a model that accurately estimates nozzle sac pressure with various injection quantities and common rail pressures, a model that accounts for the effects of adjacent spray interaction, and a model that considers the NOx reduction phenomenon under high load conditions were added.
Technical Paper

Two-Dimensional Temperature Measurements in Engine Combustion Using Phosphor Thermometry

2007-07-23
2007-01-1883
A phosphor thermometry, for measurements of two-dimensional gas-phase temperature was examined in turbulent combustion in an engine. The reasonable temperature deviation and the agreement with calculated data within 5% precision were achieved by single-shot images in the ignition process of compression ignition engine. Focusing on the local flame kernel, the flame structure could be quantitatively given by the temperature. It became evident that the HCCI flame kernels had 1-3 mm diameter and the isolated island structures. Subsequently, the HTR zone consisted of the combined flame kernels near TDC.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Trends of Future Powertrain Development and the Evolution of Powertrain Control Systems

2004-10-18
2004-21-0063
High fuel efficiency and low emission technologies, such as Direct Injection (DI) gasoline and diesel engines and hybrid powertrains, have been developed to resolve environmental and energy resource issues. The hybrid powertrain system has achieved superior power performance as well as higher system efficiency and is expected to be a core powertrain technology because it is compatible with various power sources including fuel cells. It becomes important to control complicated hybrid systems that consist of not only a powertrain but also vehicle systems such as regenerative braking. Model-based control and calibration enables both control strategy optimization and control system development efficiency improvement.
Technical Paper

Toyota’s New Hybrid Unit “L4A0”

2022-03-29
2022-01-0656
Toyota developed a new hybrid unit “L4A0” for the new Tundra, which creates both good drivability and environmental performance. To ensure off-road, towing performance and typical truck driving characteristics, the unit is based on a transmission with a torque converter and a multi-plate lock up clutch, with a motor-generator and K0 clutch installed between the engine and transmission. The motor-generator and K0 clutch are built into a module, making it possible to create new hybrid units by combining the module with various transmissions. The unit features many different motor controls. For example, in the case of step-in acceleration input, in order to achieve the desired output torque, typically a kick-down shift is necessary [1]; however, by utilizing “L4A0” both high response and high power output is achieved even without a kick-down shift. This is accomplished by assisting the engine with the motor-generator even when the engine torque is delayed at low engine speeds.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Journal Article

Toyota's Integrated Drive Power Control System for Downsized Turbocharged Engine

2015-04-14
2015-01-1636
New engine controls have been developed for the turbocharged Lexus NX200t to improve driving power by reducing engine torque output lag. Drive power management functions have been centralized in an integrated drive power control system. The newly developed controls minimize the potential reduction in drivability associated with the adoption of a turbocharged engine while improving fuel efficiency. General driveability issues commonly associated with a turbocharged engine include sudden increases in drive power due to the response lag of the turbocharger, and higher shifting frequencies if this response lag triggers a disturbed accelerator operation pattern by the driver. The developed technologies detect and control sudden increases in drive power to create the optimum drive power map, and reduce unnecessary shifts even if the driver's accelerator operation is disturbed.
Technical Paper

Toyota Newly Developed 2VZ-FE Type Engine

1988-11-01
881775
Newly developed 2VZ-FE engine for CAMRY is a 2.5-liter water cooled and V-type 6-cylinder engine exported from TOYOTA for the first time. This engine has the TOYOTA original 4-valve DOHC system. That is, exhaust camshafts driven by intake camshafts using scissors gears. By its compact configuration with the gear driven camshafts, this V-type 6-cylinder engine is mounted on a front-wheel-drive vehicle which originally had an in-line 4-cylinder engine. By increasing IVZ-FE engine displacement (for domestic), compact pentroof-type combustion chambers, optimum air-fuel ratio and ignition timing by TCCS (TOYOTA Computer Controlled System) and other technologies, a high performance 153HP/5600rpm and a large torque 155ft·lbs/4400rpm have been achieved with a low fuel consumption.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Toyota Central Injection (Ci) System for Lean Combustion and High Transient Response

1985-10-01
851675
Lean mixture operation and high transient response has been accomplished by the introduction of newly designed Central Injection (Ci) system. This paper describes the effects of Ci design variables on its performance. Lean mixture operation has been attained by optimizing the injection interval, injection timing and fuel spray angle in order to improve the cylinder to cylinder air-fuel ratio distribution. Both air-fuel distribution and transient engine response are affected by the fuel spray angle. Widening the fuel spray angle improves the air-fuel distribution but worsen the transient engine response. This inconsistency has been solved by off-setting the injector away from the center axis of the throttle body and optimizing the fuel spray angle.
X