Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

2006-04-03
2006-01-0881
Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Technical Paper

Validation of Control Software Specification Using Design Interests Extraction and Model Checking

2012-04-16
2012-01-0960
Automotive control systems such as powertrain control interact with the open physical environment, and from this nature, expensive prototyping is indispensable to capture a deep understanding of the system requirements and to develop the corresponding control software. Model-based development (MBD) has been promoted to improve productivity by virtual prototyping. Even with MBD, systematic validation of the software specification remains as a major challenge and it still depends heavily on individual engineers' skill and knowledge. Though the introduction of graphical software modeling improved the situation, it requires much time to identify the primal functions, so-called “design interests”, from a large complex model where irrelevant components are mixed with, and to validate it properly.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Journal Article

Tire and Road Input Modeling for Low-Frequency Road Noise Prediction

2011-05-17
2011-01-1690
This paper presents a modeling method for prediction of low-frequency road noise in a steady-state condition where rotating tires are excited by actual road profile undulation input. The proposed finite element (FE) tire model contains not only additional geometric stiffness related to inflation pressure and axle load but also Coriolis force and centrifugal force effects caused by tire rotation for precise road noise simulation. Road inputs act on the nodes of each rib in the contact patch of the stationary tire model and move along them at the driving velocity. The nodes are enforced to displace in frequency domain based on the measured road profile. Tire model accuracy was confirmed by the spindle forces on the rotating chassis drum up to 100Hz where Coriolis force effect should be considered. Full vehicle simulation results showed good agreement with the vibration measurement of front/rear suspension at two driving velocities.
Technical Paper

Study of Plastic Plating Using Highly Concentrated Ozonized Water Pretreatment

2005-04-11
2005-01-0618
In order to achieve good adhesive properties, typical decorative plastic plating technology uses a chromic acid process that creates an anchor effect. Due to environmental concerns with hexavalent chromium, there is a need to find alternative processes. Pretreatment using highly concentrated ozonized water was investigated as a novel approach to achieving this goal. In the conventional chromic acid process, strong adhesion between plating membranes is achieved by roughing the ABS (acrylonitrile-butadiene-styrene) resin surface by approximately 1 um. On the other hand, the highly concentrated ozonized water process achieves good adhesion with a smooth resin by changing the resin from ABS to ASA (acrylate-styrene-acrylonitrile). It was discovered that the difference in this strength of adhesion was the difference in resin surface strength (existence of deterioration or otherwise).
Journal Article

Study of Alternative Oxygen Reduction Electrocatalyst for Pt Based on Transition Metal Chalcogenides

2008-04-14
2008-01-1265
The development of an alternative oxygen reduction electrocatalyst to platinum based electrocatalysts is critical for practical use of the polymer electrolyte membrane fuel cell (PEMFC). Transition metal sulfide chalcogenides have recently been reported as a possible candidate for Pt replacement. Our work focused on chalcogenides composed of ruthenium, molybdenum, and sulfur (RuMoS). We elucidate the factors affecting electrocatalytic activity of carbon supported RuXMoY SZ catalyst. This was demonstrated through a correlation of oxygen reduction reaction (ORR) activity of the catalysts with structural changes resulting from designed changes in sulfur composition in the catalysts.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

ST-Lib: A Library for Specifying and Classifying Model Behaviors

2016-04-05
2016-01-0621
Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Technical Paper

Remote Control Autonomous Driving System

2024-04-09
2024-01-2562
The concept of the vehicle has changed in accordance with the technological innovations on last decade. Today we can call these changes basically as "CASE" (Connected, Autonomous/Automated, Shared, and Electric). The ease of product access on the user side and the mass production related works have increased worldwide production volumes. This issue has resulted in a greater demand for manpower in the sector. In addition, management, productivity, and profitability related difficulties have occurred. In this project, improvements were made mainly around the productivity through the automation of "vehicle transfer operations in plant operations", which is one of a major problem and a manpower/hour consuming task. This system named as Remote-Control Auto Driving System (RCD). The advance technology used system enabling unmanned, secured operations, were implemented in mass production environment earlier than the rest of the world.
Technical Paper

Reduction of Longitudinal Vehicle Vibration Using In-Wheel Motors

2016-04-05
2016-01-1668
This study analyzed the longitudinal vibration of a vehicle body and unsprung mass. Calculations and tests verified that longitudinal vibration can be reduced using in-wheel motors, which generate torque very quickly. Despite increasing demand for measures to enhance ride comfort considering longitudinal vibration, this type of vibration cannot be absorbed or controlled using a conventional suspension. This paper describes the reduction of vehicle longitudinal vibration that cannot be controlled by conventional actuators.
Technical Paper

Post PVC Sound Insulating Underbody coating

2002-03-04
2002-01-0293
Underbody coating is used to prevent chipping damage of the automobile underbody and wheel well. Multi-functional material that gives sound insulating properties is called sound insulating underbody coating. This paper describes the development of underbody coating material with powdered acrylic composition as an alternative to polyvinyl chloride resin. The new material also has better foaming properties. It is possible to ensure excellent sound insulating performance with thin film. This multi-functional underbody coating is the first application in the world with weight reduction and cost saving, and in a more environmentally acceptable manner.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Technical Paper

Optimum Design of Hypoid Gear Dimension and Tooth Surface

2003-03-03
2003-01-0680
This paper describes and discusses the result of a comprehensive simulation analysis we have carried out to clarify the effects of gear dimensions, tooth surface modification, and manufacturing error on the static transmission error of automotive hypoid gears. Three representative factors have been analyzed contact ratio, crowning and pitch error because these characteristics play the most important role in tooth dimensions, tooth surface modification and manufacturing error. The analysis has clarified the effect of each factor on gear noise, making it possible to prepare a guideline for optimal design of gear dimensions and tooth surface modification under various conditions.
Technical Paper

Noise and Vibration Reduction Technology in the Development of Hybrid Luxury Sedan with Series/Parallel Hybrid System

2007-05-15
2007-01-2232
For a luxury sedan, quietness is a major selling point, and a hybrid luxury sedan is expected to be especially quiet. Therefore, in the development of the hybrid luxury sedan, every possible effort is needed to reduce the hybrid system noise in order to ensure a level of quietness far superior to that of an ordinary gasoline-powered vehicle. In addition, the noise and vibration phenomena that are particular to vehicles with longitudinal power trains require special reduction technologies. This paper first describes the superior quietness of hybrid luxury vehicles in comparison with ordinary gasoline-powered vehicles. This paper then addresses the development issues of vibration during engine starting, engine booming noise, and motor noise, explaining the mechanisms by which they are generated and the technologies employed to reduce them.
Technical Paper

Noise and Vibration Reduction Technology in New Generation Hybrid Vehicle Development

2005-05-16
2005-01-2294
The new gasoline hybrid car, “the Prius”, has achieved both two-liter class power performance and world top-class gas mileage with the new Toyota Hybrid System “THS II”. Compared with the previous THS, the electric motor drive power of the THS II has been boosted by 50% and the weight of this system has been reduced by 20%. This paper describes the NV problems caused by the improvements to the hybrid system, and the countermeasures for them. It also describes the technologies for reduction of engine start vibration. Finally an evaluation method and countermeasures against interior engine noise are described.
Technical Paper

Noise and Vibration Reduction Technology in Hybrid Vehicle Development

2001-04-30
2001-01-1415
The world's first mass production gasoline hybrid passenger car, the “Prius”, was introduced into the Japanese market in 1997. By the time it was introduced into the American and European markets in Mid-2000, its fuel consumption and exhaust emissions had been further improved while achieving superior NV performance compared with conventional vehicles with 1.5-liter engines even in these competitive markets. This paper describes NV reduction technology for problems peculiar to the hybrid vehicle such as engine start/stop vibration, drone noise and vibration at low engine speed and motor/generator noise and vibration. It also compares the overall NV performance of the hybrid vehicle with conventional gasoline engine vehicles.
Technical Paper

New Simulation Method Using Experimental Modal Analysis for Prediction of Body Deformation during Operation

2001-03-05
2001-01-0494
A method for predicting body deformation during operation, which cannot be measured by conventional methods, has been developed. The method creates a body model based on the characteristics extracted by modal analysis of the results of a vibration testing of an actual vehicle. The model is combined with a suspension model, using multibody dynamics software, and body deformation calculations are performed. In this paper, the influence of body deformation on vehicle controllability and stability is studied and the usefulness of the method is verified.
X