Refine Your Search

Topic

Author

Search Results

Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Technical Paper

Study of Large OSC Materials (Ln2O2SO4) on the Basis of Sulfur Redox Reaction

2009-04-20
2009-01-1071
Three-way catalyst shows high performance under stoichiometric atmosphere. The CeO2-ZrO2 based materials (CZ) are added as a buffer of O2 concentration. To improve the catalyst performance the larger O2 storage capacity (OSC) are needed. Theoretically, the sulfur oxidation-reduction reaction moves oxygen 8 times larger than cerium. We focused on this phenomenon and synthesized Ln2O2SO4 as a new OSC material. The experimental result under model gas shows that the OSC of Ln2O2SO4 is 5 times lager than CZ.
Technical Paper

Simultaneous PM and NOx Reduction System for Diesel Engines

2002-03-04
2002-01-0957
A new after-treatment system called DPNR (Diesel Particulate-NOx Reduction System) has been developed for simultaneous and continuous reduction of particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust gas. This system consists of both a new catalytic technology and a new diesel combustion technology which enables rich operating conditions in diesel engines. The catalytic converter for the DPNR has a newly developed porous ceramic structure coated with a NOx storage reduction catalyst. A fresh DPNR catalyst reduced more than 80 % of both PM and NOx. This paper describes the concept and performance of the system in detail. Especially, the details of the PM oxidation mechanism in DPNR are described.
Journal Article

Reaction Mechanism Analysis of Di-Air-Contributions of Hydrocarbons and Intermediates

2012-09-10
2012-01-1744
The details of Di-Air, a new NOx reduction system using continuous short pulse injections of hydrocarbons (HC) in front of a NOx storage and reduction (NSR) catalyst, have already been reported. This paper describes further studies into the deNOx mechanism, mainly from the standpoint of the contribution of HC and intermediates. In the process of a preliminary survey regarding HC oxidation behavior at the moment of injection, it was found that HC have unique advantages as a reductant. The addition of HC lead to the reduction or metallization of platinum group metals (PGM) while keeping the overall gas atmosphere in a lean state due to adsorbed HC. This causes local O₂ inhibition and generates reductive intermediate species such as R-NCO. Therefore, the specific benefits of HC were analyzed from the viewpoints of 1) the impact on the PGM state, 2) the characterization of intermediate species, and 3) Di-Air performance compared to other reductants.
Technical Paper

Newly Developed Toyota Plug-in Hybrid System and its Vehicle Performance under Real Life Operation

2011-06-09
2011-37-0033
Toyota has been introducing several hybrid vehicles (HV) since 1997 as a countermeasure to the concerns raised by automobile, like CO2 reduction, energy security, and pollutant emission reduction in urban areas. Plug in hybrid Vehicle (PHV) uses electric energy from grid rather than fuel for most short trips and therefore presents a next step forward towards an even more effective solution for these concerns. For longer trips, the PHV works as a conventional hybrid vehicle, providing all the benefits of Toyota full hybrid technology, such as low fuel consumption, user-friendliness and long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space.
Technical Paper

New Method to Achieve High Hydraulic Pressure and Improved Gear Pump Performance in Active Height Control (AHC) System

2019-04-02
2019-01-0854
Vehicle weight reduction is becoming more and more important as increasingly stringent fuel economy regulations are introduced around the world. This development improved the hydraulic gear pump performance of the next-generation Active Height Control (AHC) suspension and achieved significant weight reduction of 5 kg by eliminating the auxiliary pump accumulator. To realize the necessary high-pressure with a high flow rate, the sealing performance of the pump at the tips of the gear teeth is very important. This was achieved by developing “breaking-in” technology that shaves away the aluminum housing using the gear teeth and creates zero clearance between the teeth tips and the housing. To reduce the frictional loss torque of the pump, which was identified as an issue of this technology, it was necessary to completely shave away the initial clearance in the breaking-in process.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

2011-04-12
2011-01-1427
Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
Technical Paper

New Conceptual Lead Free Overlays Consisted of Solid Lubricant for Internal Combustion Engine Bearings

2003-03-03
2003-01-0244
Two types of new conceptual lead free overlays are developed for automotive internal combustion(IC) engine bearings. The overlays are consisted of molybdenum disulfide(MoS2) and polyamideimide(PAI) resin for binding. One of the overlays is suitable for diesel engines with higher unit load and the other overlay is suitable for gasoline engines with higher sliding velocity. Both overlays indicate good corrosion resistance and wear resistance comparing with conventional lead base overlay. Moreover, higher fatigue resistance is obtained in combination with high performance lead free bearing alloy. These new bearings have the potential to become alternative materials to conventional copper lead bearings with lead base overlay.
Journal Article

Low-viscosity Gear Oil Technology to Improve Wear at Tapered Roller Bearings in Differential Gear Unit

2016-10-17
2016-01-2204
Torque loss reduction at differential gear unit is important to improve the fuel economy of automobiles. One effective way is to decrease the viscosity of lubricants as it results in less churning loss. However, this option creates a higher potential for thin oil films, which could damage the mechanical parts. At tapered roller bearings, in particular, wear at the large end face of rollers and its counterpart, known as bearing bottom wear is one of major failure modes. To understand the wear mechanism, wear at the rolling contact surface of rollers and its counterpart, known as bearing side wear, was also observed to confirm the wear impact on the tapered roller bearings. Because gear oils are also required to avoid seizure under extreme pressure, the combination of a phosphorus anti-wear agent and a sulfurous extreme pressure agent are formulated.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Technical Paper

Improvement of PN Filtration Efficiency of Coated GPF – Study of Improvement of PN Filtration Efficiency and Reduction of Pressure Drop

2023-09-29
2023-32-0124
This research aimed to improve the PN filtration efficiency of a catalyst coated gasoline particulate filter (cGPF) to meet the next generation of emissions regulations for internal combustion engines. This paper proposes a concept that improves the PN filtration performance while maintaining low pressure drop by forming a thin PM trap layer on the surface of the cGPF substrate. The design guidelines for the coating particle size and coating amount of the PM trap layer were investigated, and actual manufacturing issues were also identified. The validity of this concept and guidelines was then verified on an actual vehicle.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2002-03-04
2002-01-0732
In order to further improve the performance of NOx storage-reduction catalysts (NSR catalysts), focus was placed on their high temperature performance deterioration via sulfur poisoning and heat deterioration. The reactions between the basicity or acidity of supports and the storage element, potassium, were analyzed. It was determined that the high temperature performance of NSR catalysts is enhanced by the interaction between potassium and zirconia, which is a basic metal oxide. Also, a new zirconia-titania complex metal oxides was developed to improve high temperature performance and to promote the desorption of sulfur from the supports after aging.
Technical Paper

Improvement of Heat Resistance for Bioplastics

2003-03-03
2003-01-1124
We studied the adoption of plastics derived from plants (bioplastics) such as poly(lactic acid) (PLA) for automotive parts in order to contribute to suppressing the increase in CO, emissions. For this application. major improvements of heat and impact resistance are needed. As a method to improve heat resistance, we developed PLA combined with clay of high heat resistance. As a result. we succeeded in synthesizing a PLA-clay nanocomposite using 18(OH)2-Mont. In-mold crystallization of PLA-clay nanocomposite lead to the great suppression of storage modulus decrease at high temperature. which in turn improved the heat resistance of PLA.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

Hardfaced Valve and P/M Valve Seat System for CNG and LPG Fuel Engines

2005-04-11
2005-01-0718
When adapted for use in automotive engines, CNG and LPG are considered environmentally friendly compared to gasoline or diesel fuel. However, when these gaseous fuels are used, wear of the valve seat insert and valve face increases if materials meant for use with gasoline are adopted. In comparison to a gasoline engine, the oxide membrane that is formed on the sliding surfaces of the valve face and valve seat insert is limited. As a consequence, adhesion occurs and increased wear of these components is the result. Based on analysis materials that are more compatible with these gaseous fuels were developed.
Technical Paper

HC Adsorber System for SULEVs of Large Volume Displacement

2007-04-16
2007-01-0929
A new HC adsorber system was developed to achieve California SULEV emission standards for a V8 5.0-liter engine application (i.e. LS600hL). A HC adsorber system was first released on 2001 PZEV Prius (1.5-liter engine) in U.S.A. For the 5.0L application the substrate volume of both catalyst and adsorber had to be enlarged for a large volume displacement. Prius-type adsorber system could not be adopted for LS600hL because of the problems of installation. So, a new constructional adsorber was proposed. However the increase of gas flow into the adsorber substrate was a problem for desorption. The gas flow into the adsorber substrate was found to be controllable by the specification adjustment of the “throat” and “retainer” parts of adsorber system. Thus the rapid desorption was successfully reduced, and the HC adsorber system achieved a 50% reduction of HC emission.
X