Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

The application of the damage & fracture material model to crashworthiness evaluations for Aluminum cars.

2003-10-27
2003-01-2776
In an evaluation of crashworthiness for the cars made of aluminum alloys, the evaluation considering fracture phenomenon comes to be needed because conventional aluminum alloys have low fracture strain (10-20%). In case of the development of a B-Pillar made by die cast, if crack occurrence, furthermore, separation of a part can be estimated by using CAE in crashworthiness evaluations, we can reduce the number of prototype makings and the cost of development using expensive dies. Therefore, we performed crashworthiness evaluations by CAE using some sort of a damage & fracture material model. It is known as “Orthotropic damage & fracture model”.
Technical Paper

The Impact of Operating Conditions on Post-Injection Efficacy; a Study Using Design-of-Experiments

2018-04-03
2018-01-0229
Post-injection strategies prove to be a valuable option for reducing soot emission, but experimental results often differ from publication to publication. These discrepancies are likely caused by the selected operating conditions and engine hardware in separate studies. Efforts to optimize not only engine-out soot, but simultaneously fuel economy and emissions of nitrogen oxides (NOx) complicate the understanding of post-injection effects even more. Still, the large amount of published work on the topic is gradually forming a consensus. In the current work, a Design-of-Experiments (DoE) procedure and regression analysis are used to investigate the influence of various operating conditions on post-injection scheduling and efficacy. The study targets emission reductions of soot and NOx, as well as fuel economy improvements. Experiments are conducted on a heavy-duty compression ignition engine at three load-speed combinations.
Technical Paper

Investigation of Anteroposterior Head-Neck Responses during Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model

2006-11-06
2006-22-0019
Injuries of the human brain and spinal cord associated with the central nervous system (CNS) are seen in automotive accidents. CNS injuries are generally categorized into severe injuries (AIS 3+). However, it is not clear how the restraint conditions affect the CNS injuries. This paper presents a newly developed three-dimensional (3D) finite element head-neck model in order to investigate the biomechanical responses of the brain-spinal cord complex. The head model consists of the scalp, skull, and a detailed description of the brain including the cerebrum, cerebellum, brainstem with distinct white and gray matter, cerebral spinal fluid (CSF), sagittal sinus, dura, pia, arachnoid, meninx, falx cerebri, and tentorium. Additionally, the neck model consists of the cervical vertebral bodies, intervertebral discs, muscles, ligaments, spinal cord with white and gray matter, cervical pia, and CSF.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2002-03-04
2002-01-0732
In order to further improve the performance of NOx storage-reduction catalysts (NSR catalysts), focus was placed on their high temperature performance deterioration via sulfur poisoning and heat deterioration. The reactions between the basicity or acidity of supports and the storage element, potassium, were analyzed. It was determined that the high temperature performance of NSR catalysts is enhanced by the interaction between potassium and zirconia, which is a basic metal oxide. Also, a new zirconia-titania complex metal oxides was developed to improve high temperature performance and to promote the desorption of sulfur from the supports after aging.
Technical Paper

Development of a New Breath Alcohol Detector without Mouthpiece to Prevent Drunk Driving

2009-04-20
2009-01-0638
Breath alcohol interlock systems are used in Europe and the U.S. for drunk driving offenders, and a certain effect has been revealed in the prevention of drunk driving. Nevertheless, problems remain to be solved with commercialized detectors, i.e., a person taking the breath alcohol test must strongly expire to the alcohol detector through a mouthpiece for every test, more over the determination of the breath alcohol concentration requires more than 5 seconds. The goal of this research is to develop a device that functions suitable and unobtrusive enough as the interlock system. For this purpose, a new alcohol detector, which does not require a long and hard blowing to the detector through a mouthpiece, has been investigated. In this paper, as a tool available on board, a contact free alcohol detector for the prevention of drunk driving has been developed.
Technical Paper

Development of a Human FE Model with 3-D Geometry of Muscles and Lateral Impact Analysis for the Arm with Muscle Activity

2009-06-09
2009-01-2266
To investigate the effect of muscle activity in pre-impact on injury outcome, we developed a human arm finite element model with muscles which consisted of solid elements and truss elements that could be used for simulating muscle stiffness change for the inputted activity and 3-D geometry of each muscle. Two series of experimental tests on muscle stiffness change and arm flexion were conducted for validation of the model. Comparisons between the simulation results and test data indicated the model validity. Lateral impact simulations for a left arm demonstrated that the muscle activity in pre-impact had significant effects on the motion and stress distribution of the arm bones.
Technical Paper

Development of a Human Body Finite Element Model with Multiple Muscles and their Controller for Estimating Occupant Motions and Impact Responses in Frontal Crash Situations

2012-10-29
2012-22-0006
A few reports suggest differences in injury outcomes between cadaver tests and real-world accidents under almost similar conditions. This study hypothesized that muscle activity could primarily cause the differences, and then developed a human body finite element (FE) model with individual muscles. Each muscle was modeled as a hybrid model of bar elements with active properties and solid elements with passive properties. The model without muscle activation was firstly validated against five series of cadaver test data on impact responses in the anterior-posterior direction. The model with muscle activation levels estimated based on electromyography (EMG) data was secondly validated against four series of volunteer test data on bracing effects for stiffness and thickness of an upper arm muscle, and braced driver's responses under a static environment and a brake deceleration.
Technical Paper

Development of Piston and Piston Ring Lubrication Analysis

2015-09-01
2015-01-2039
The reduction of CO2 emissions has become an imperative duty in order to cope with environmental compliance. For car manufacturers, CO2 emission has been set by regulation and many consumers prefer a fuel efficient car because of the increasing fuel price. In such a situation, reducing engine friction is an effective way of improving fuel efficiency. Among engine parts, the piston counts for a large percentage of the friction losses. In this study, we established a calculation model for estimating piston and piston ring friction. This paper shows how the accuracy of the calculation model was improved by validating against measurements.
Technical Paper

Development of Lane Recognition Algorithm for Steering Assistance System

2005-04-11
2005-01-1606
This paper gives an outline of the steering assistance system (hereinafter, SAS) and a description of its key technology: the lane recognition algorithm. To accommodate a variety of driving styles, the SAS is equipped with a lane keeping assistance mode (LKA mode) and a lane departure warning mode (LDW mode) that can be selectively set by the driver. The former mode works in combination with adaptive cruise control (ACC) and carries the advantage of relieving the driving load that is placed on the driver. The latter mode has the benefit of reducing the danger of lane departure accidents caused by the driver dozing off and taking his eyes off the road. The newly developed lane recognition ECU has a simple hardware set-up of two 32-bit microcomputers. The lane recognition algorithm was constructed on the basis of a logic process that analyzes pattern edge points and selects a set of edge points that most closely resemble lanemarks.
Technical Paper

Development of Engine Brake Control System for Commercial Vehicle with 6 Speed Automatic Transmission

2006-04-03
2006-01-1674
1 In general, the engine brake performance of a vehicle with an automatic transmission (AT) is inferior to that of a vehicle with a manual transmission (MT), without manually downshifting the transmission. Especially, in commercial vehicles having great variations in load capacity, improvements in engine brake performances are significant issues for vehicles with an AT in terms of both safety and performance. For such circumstances, Aisin Seiki has succeeded in the development of a 6-speed AT for commercial vehicles with an engine control system that enables the vehicle to decelerate according to desire of drivers in various driving conditions. An outline of the development of this control system is presented below.
Technical Paper

Characteristics of Vehicle Stability Control's Effectiveness Derived from the Analysis of Traffic Accident Data Statistics

2004-10-18
2004-21-0074
Vehicle Stability Control (VSC) is a system designed to help drivers when skidding or unstable vehicle behavior is about to occur. We have studied the characteristics of VSC in reducing accidents by analyzing accident data statistics in Japan. The results indicate that VSC is effective in reducing single car accidents and head-on collisions with other automobiles. In these accidents, the analysis showed that VSC may be more helpful in reducing a larger number of accidents in the higher speed range where vehicle dynamics plays a greater part. It also showed that VSC may contribute to reducing accidents that result from unstable vehicle behavior. VSC demonstrated more effectiveness in reducing accidents involving lateral & rear impacts than those of frontal impacts, and in reducing accidents on wet & snowy/icy roads than those on dry roads.
Technical Paper

Anti-Shudder Mechanism of ATF Additives at Slip-Controlled Lock-Up Clutch

1999-10-25
1999-01-3616
The anti-shudder effect of ATF additives and their mechanisms have been investigated. Anti-shudder durability was evaluated using an automatic transmission (AT) on an engine stand under continuously slip-controlled condition. The addition of over-based Ca-sulfonate and friction modifier (FM) remarkably improved the anti-shudder durability of ATF. The surface roughness of the contact area (contact area roughness) of the clutch plates was measured by an electron probe surface roughness analyzer. To evaluate the boundary frictional properties of the adsorbed film formed, the friction coefficient of the clutch plates in the absence of oil was examined after the anti-shudder durability test. It was found that shudder occurrence was strongly correlated with the contact area roughness and the boundary frictional property of the steel plate surface. Large contact area roughness and low boundary friction were preferred to prevent shudder.
Technical Paper

Anti- Combustion Deposit Fuel Development for 2009 Toyota Formula One Racing Engine

2011-08-30
2011-01-1983
Toyota participated in Formula One1 (F1) Racing from 2002 to 2009. As a result of the downturn in the world economy, various engine developments within F1 were restricted in order to reduce the cost of competing in F1. The limit on the maximum number of engines allowed has decreased year by year. Toyota focused on the engine performance deterioration due to the combustion chamber deposits. In 2009, Toyota was successful in reducing around 40% of the deterioration by making combustion chamber cleaner in cooperation with ExxonMobil. This contributed to good result of 2009 F1 season for Toyota, including two second place finishes.
Technical Paper

Ankle Skeletal Injury Predictions Using Anisotropic Inelastic Constitutive Model of Cortical Bone Taking into Account Damage Evolution

2005-11-09
2005-22-0007
The most severe ankle skeletal injury called pilon fractures can cause long term disability and impairment. Based on previous experimental studies, the pilon fractures are regarded as caused by a high-energy compressive force in the ankle joint and affected by a muscular tension force generated by emergency braking. However, quantitative injury criteria for the pilon fractures are still unknown. More accurate prediction of bone fractures in the distal tibia using a FE model of human lower leg can help us know the quantitative injury criteria. Therefore we newly proposed an anisotropic inelastic constitutive model of cortical bone including damage evolution and then implemented it to a FE code, LS-DYNA. The proposed model successfully reproduced most of anisotropy, strain rate dependency, and asymmetry of tension and compression on material and failure properties of human femoral cortical bone.
Journal Article

Analysis of Piston Friction in Internal Combustion Engine

2013-10-14
2013-01-2515
The purpose of this study is to analyze the piston skirt friction reduction effect of a diamond-like carbon (DLC)-coated wrist pin. The floating liner method and elasto-hydrodynamic lubrication (EHL) simulation were used to analyze piston skirt friction. The experimental results showed that a DLC-coated wrist pin reduced cylinder liner friction, and that this reduction was particularly large at low engine speeds and large pin offset conditions. Friction was particularly reduced at around the top and bottom dead center positions (TDC and BDC). EHL simulation confirmed that a DLC-coated wrist pin affects the piston motion and reduces the contact pressure between the piston skirt and cylinder liner.
Technical Paper

Analysis of Oil Consumption Mechanism by Measuring Oil Ring Radial Movement

1989-09-01
892104
Oil consumption mechanism was analyzed by measuring the radial movement of the upper side rail in a three piece type oil ring, together with the piston movement. Ultra-miniature inductive displacement sensors were designed to measure the oil ring movement and fitted on the upper side rail with a part of the 3rd land cut out. The clearance between the side rail and the cylinder wall was measured under various operating conditions. The results showed that the radial movement of the oil ring was affected by the piston movement, which results in the possibility of degrading the oil control ability for the cylinder wall because the oil ring temporarily moves with the piston. Accordingly, the designs to improve the piston movement or to be less affected by the movement proved to be an important factor for the reduction of the oil consumption.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

A Study of Knee Joint Kinematics and Mechanics using a Human FE Model

2005-11-09
2005-22-0006
Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices.
X