Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 1. Analysis and Test of Nylon and GTL Diesel Fuel Before and After Immersion

2006-10-16
2006-01-3326
The effect of GTL diesel fuel on organic materials used in fuel delivery systems of vehicles was investigated. Specimens made from 16 kinds of organic materials were immersed in GTL diesel fuels synthesized at Refinery-A and Refinery-B (referred to as GTL-A and GTL-B, respectively) and then subjected to tensile testing. The tensile test results revealed that elongation of the nylon sample immersed in GTL-A was extremely small, about 4% of that of untreated nylon. In the light of this finding, the GTL diesel fuels and nylons before and after immersion test were analyzed in detail using about 20 analysis methods to determine the cause for poor elongation. The following points were found. (1) GTL-A consisted of low molecular-weight paraffins. (2) GTL-A had low molecular-weight i-paraffins. (3) The nylon immersed in GTL-A contained low molecular-weight paraffins. (4) The paraffins in the nylon immersed in GTL-A were richer in i-paraffins than the original GTL-A.
Technical Paper

A New Material Recycling Technology for Automobile Rubber Waste

2003-10-27
2003-01-2775
A new material recycling technology for crosslinked rubber was developed using the continuous reactive processing method. In this process of producing reclaimed rubber, breakage of crosslinking points in the crosslinked rubber occurs selectively under the controls of shear stress, reaction temperature, and internal pressure in a modular screw type reactor. Deodorization during the process has also become possible by a newly developed method. The reclaimed rubber obtained from rubber waste generated from both automobile manufacturing products and post-consumer products shows excellent mechanical properties applicable to new rubber compounds. Furthermore, an enhanced rubber recycling process for producing thermoplastic elastomer (TPE) based on rubber waste has been established. The obtained TPE exhibits highly recoverable rubber elasticity and mechanical properties comparable to commercial TPE.
X