Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear Mechanisms of Methanol Fueled Engine

1985-11-11
852199
The wear mechanisms of the methanol engine were studied using dynamometer tests. Formic acid from methanol combustion mixes with the lubricant oil and attacks the metal surfaces. The iso tacho prorissis method was successfully applied to analyze the formic acid content of the used oil. A large amount of condensed water is also formed by methanol combustion and accelerates the wear. Wear can be effectively reduced by shortening lubricant oil change intervals, by using a special oil and by durable surface treatment of engine parts.
Technical Paper

Wear Analysis of DLC Coating in Oil Containing Mo-DTC

2007-07-23
2007-01-1969
Diamond-like carbon (DLC) coating has excellent properties like high hardness and low friction. So it has attracted considerable attention in recent years as a low-friction coating material. However, some DLC coatings display increased wear in oil containing Mo-DTC (Molybdenum-dithiocarbamates). Wear analyses of sliding surface after block-on-ring tests were conducted suggest that the decomposition product from Mo-DTC, MoO3, reacts with active sites in the DLC to promote the wear of DLC.
Technical Paper

Visibility Requirements for Automobile CRT Displays - Color, Contrast and Luminance

1988-02-01
880218
Display devices are required to have some fundamental functions which are brightness & gradation, colorfullness, resolution & sharpness, response time, and suitable size of the picture. Since the CRT (Cathode Ray Tube) is superior to the other display devices in these requirements, it can offer much information efficiently and effectively. Their visibility should not be evaluated only on the basis of some standards for office automation systems. From the point of view of human factors, visibility investigations of the CRTs for automobiles are examined. In this paper the relationship between the chromaticity difference and the luminance contrast for drivers to read the picture easily, and the luminance of the background in the CRTs for drivers not to be dazzled in the nighttime driving are clarified.
Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Toyota Electro Multivision

1988-02-01
880220
This paper describes the newest CRT display system named “Toyota Electro Multivision”, released in the '88 model Toyota Crown. This system has grown to be a total information system, having multiple new functions, including control, operation and displays for the “hands free” phone. This new system uses a compact disc as its memory media. Here we introduce our design concept for the CRT display system, and outline the system and its key technologies.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

Thermal Analysis of Timing Belt

1989-09-01
891988
This paper describes an analysis of the rise in timing belt temperature occuring under high engine speed operation that was made to establish the cause of heat deterioration of the belt materials. Surface temperatures of the belt were accurately measured by correcting thermo-vision detected radiations to eliminate environmental radiation. The temperature profile of a belt cross-section was obtained by a specially developed thermo-couple device. The experimental results indicated that heat generated by the belt contributes significantly to the temperature rise and that the primary cause of the heat generation is bending hysteresis of the belt cords. In addition, a description is made of a method of calculating the rate of heat generation in the belt. In this simulation method, the energy dissipated as heat is calculated from the bending strains and loss moduli of the belt materials. Calculated results were found to agree well with experimental results.
Technical Paper

The Oil Flow Measuring Method in Engine Lubrication

1999-10-25
1999-01-3467
We have developed a method by which the oil flow rate can be measured by using a hot-wire sensor that could be installed in the passages of actual engine lubricant oil. This measuring method proves to have a ±5% accuracy and a 40kHz response that enables ‘real time’ function. Thus, observation of (1) the effect of bearing clearance, and (2) the fluctuating mechanism of the oil flow per 1 degree crank angle from the point of engine start-up to 6000r/min and full load can be achieved, and the timing and quantity of intermittent oil-jet from the oil hole in connecting rod were ascertained.
Technical Paper

The Humidity Control System Applied to Reduce Ventilation Heat Loss of HVAC Systems

2011-04-12
2011-01-0134
Vehicles have been more required to save energy against the background of the tendency of ecology. As the result of improving efficiency of internal combustion engines and adoption of electric power train, heat loss from engine coolant, which is used to heat the cabin, decreases and consequently additional energy may be consumed to maintain thermal comfort in the passenger compartment in winter. This paper is concerned with the humidity control system that realizes reduction of ventilation heat loss by controlling recirculation rate of the HVAC system by using highly accurate humidity sensor to evaluate risk of fogging on the windshield. As the results of the control, fuel consumption of hybrid vehicles decreases and maximum range of electric vehicles increases.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

2018-04-03
2018-01-0506
Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Technical Paper

The Analysis and Mechanism of Engine ‘Intake Rumbling Noise’

1990-09-01
901755
This report relates to that kind of rumble generated in the passenger compartment during acceleration which is caused by intake noise. The rumble is a rough, unpleasant noise that comes into the passenger compartment during acceleration. This noise was reported to be caused by the resonant bending vibration of the crankshaft. However, the writer and associates found that intake noise from the air inlet could also cause the rumble in the passenger compartment as reported herein. By a modal analysis of the air column vibration generated in the inlet system parts and analysis of the air column vibration response to the force input from each cylinder, the writer and associates determined that the standing wave generated in the surge tank was the cause of the rumble. By modifying the shapes of surge tank models for computer simulation that had been used in predicting booming noise, etc., it became possible to predict rumble level due to intake noise through calculation.
Technical Paper

Study of improving Road-Load Simulation -Power Steering Dynamic Testing System

1996-02-01
960728
For a vehicle fatigue and strength testing system, two methods are usually used to accurately simulate the road-load on the test bench: one is the “separation of road-load into multi-axial loads” method and the other is the “compensation with frequency response function” method. These methods have remarkably improved the abnormality detection capability and accuracy of bench testing. For power steering or other units, however, the road-load points drift while the vehicle is driven. Further more, the road-load is applied in a complex manner to the vehicle. These factors make it difficult to separate the road-load into multi-axial loads and to provide stable measurement of the frequency response function. Thus, further progress of these methods has been delayed. The objective of this study was to make the bench testing of power steering units possible.
Technical Paper

Study of High Efficiency Zero-Emission Argon Circulated Hydrogen Engine

2010-04-12
2010-01-0581
The potential of high efficiency zero-emission engines fueled by hydrogen, which is regarded as a promising form of energy for the future, is being researched. The argon circulated hydrogen engine [ 1 ] is one system theoretically capable of achieving both high efficiency and zero emissions, and its feasibility for use in vehicles has been studied. Specifically, tests were performed to verify the following issues. It was examined whether stable hydrogen combustion could be achieved under an atmosphere of argon and oxygen, which has a high specific heat ratio, and whether the substantial thermal efficiency improvement effect of the argon working gas could be achieved. An argon circulation system was also studied whereby steam, which is the combustion product of the hydrogen and oxygen emitted from the engine, is separated by condensation to enable the remaining argon to be re-used.
Technical Paper

Study of Fuel Flow Rate Change in Injector for Methanol Fueled S.I. Engine

1995-02-01
950071
The change of the fuel flow rate in an injector with mileage accumulation causes poor drivability and exhaust emission deterioration in Otto-type methanol fueled vehicles with a multi-point fuel injection system. This is one of the serious problems which needs to be solved for the practical use of methanol fueled vehicles. The investigation results reveal that the wear of contact surfaces between a valve needle and a valve body increases the resistance force for valve needle movement and causes the change of dynamic fuel flow rate in the injector. The effects of several countermeasures to solve this problem are evaluated.
Technical Paper

Studies on Carbon Canester to Satisfy LEVII EVAP Regulations

2000-03-06
2000-01-0895
Recently, the California Air Resources Board (CARB) has proposed a new set of evaporative emissions and “Useful Life” standards, called LEVII EVAP regulations, which are more stringent than those of the enhanced EVAP emissions regulations. If the new regulations are enforced, it will become increasingly important for the carbon canister to reduce Diurnal Breathing Loss (DBL) and to prevent deterioration of the canister. Therefore, careful studies have been made on the techniques to meet these regulations by clarifying the working capacity deterioration mechanism and the phenomenon of DBL in a carbon canister. It has been found that the deterioration of working capacity would occur if high boiling hydrocarbons, which are difficult to purge, fill up the micropores of the activated carbon, and Useful Life could be estimated more accurately according to the saturated adsorption mass of the activated carbon and the canister purge volume.
Technical Paper

Spark Plug Fouling: Behavior and Countermeasure

1992-09-01
922093
The higher compression ratio engines, two-stroke engines and flexible fuel vehicles currently under development tend to face the problems of spark plug fouling owing to the necessity of using cold type spark plugs. This paper analyzes the sparking of fouled spark plugs and investigates the characteristics required of an ignition system in order to avoid fouling problems. The results clearly establish that to maintain a strong spark even when the plug is fouled, a high voltage should be instantaneously applied to the spark plug. A series-gap on the high-tension side was confirmed to be an effective means of achieving this and a new plug cap provided with a series-gap has resolved fouling problems such as failure to start. Lately, fuel economy and long-term energy conservation have become critically important. For automobiles, higher compression ratio engines, two-stroke engines and flexible fuel vehicles (FFVs) are being developed.
Technical Paper

Retention of Friction Reducing Performance of MoDTC-Containing Fuel Efficient Gasoline Engine Oils During Use

2000-06-19
2000-01-2053
The deterioration of the friction reducing properties of engine oils containing molybdenum dithiocarbamates (MoDTCs) in service was studied. A quantitative analysis of MoDTCs and zinc dithiophosphates (ZDTPs) remaining in aged oils revealed that ZDTPs were consumed faster than MoDTCs. The consumption rate of ZDTPs was slow in the presence of MoDTCs and peroxide-decomposing antioxidants. The frictional properties of aged oils were evaluated with a reciprocating friction tester (SRV tester). The friction coefficient measured with the SRV tester was correlated to the properties of the aged oils, such as the TAN increase, TBN, and concentration of remaining ZDTPs.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Technical Paper

Research into All Solid Secondary Lithium Battery

2011-05-17
2011-39-7234
It may be possible to simplify the structure and control systems of a lithium-ion battery by replacing the conventional liquid electrolyte with a solid electrolyte, resulting in higher energy density. However, power performance is a development issue of batteries using a solid electrolyte. To increase battery power performance, in addition to lithium ionic conductivity within the bulk of the electrolyte, it is also necessary to boost the lithium ionic conductivity at the interface between the electrode active material and the electrolyte, and to boost electron and lithium ionic conductivity within the cathode and anode active material. This research studied the mechanism of resistance reduction by electrode surface modification. Subsequently, this research attempted to improve electron conductivity by simultaneously introducing oxygen vacancies and carrying out nitrogen substitution in the crystalline structure of the Li4Ti5O12 anode active material.
Technical Paper

Recycling Technology of Surface Material for Interior Trims

2000-03-06
2000-01-0741
Two-layered surface materials composed of a thermoplastic olefin elastomer (TPO) skin and a cross-linked polypropylene (PP)foam are increasingly replacing the conventional PVC skin/PVC foam for interior trims. In the past, recycled material obtained by melt-blending TPO skin and PP foam could not be re-used for TPO skin because of its appearance. A new recycling technology using the reaction biaxial extruder with a reaction agent can decompose the network structure of PP foam. As a result, PP foam is dispersed into TPO uniformly and the recycled material has properties and an appearance similar to virgin TPO. These new properties may allow the application of the recycled material as a surface material.
X