Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization of the Cavitating Flow inside the Nozzle Hole Using by Enlarged Acrylic Nozzle

2011-08-30
2011-01-2062
In this study, it is purpose to make clear the effect of cavitation phenomenon on the spray atomization. In this report, the cavitation phenomenon inside the nozzle hole was visualized and the pressure measurements along the wall of the nozzle hole were carried out by use of 25-times enlarged acrylic nozzle. For the representatives of regular gasoline, single and two-component fuels were used as a test fuel. In addition, various cavitating flow patterns same as experimental conditions were simulated by use of Barotropic model incorporated in commercial code of Star-CD scheme, and compared with experimental results.
Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Using the Modal Response of Window Vibrations to Validate SEA Wind Noise Models

2017-06-05
2017-01-1807
The SEA model of wind noise requires the quantification of both the acoustic as well as the turbulent flow contributions to the exterior pressure. The acoustic pressure is difficult to measure because it is usually much lower in amplitude than the turbulent pressure. However, the coupling of the acoustic pressure to the surface vibration is usually much stronger than the turbulent pressure, especially in the acoustic coincidence frequency range. The coupling is determined by the spatial matching between the pressure and the vibration which can be described by the wavenumber spectra. This paper uses measured vibration modes of a vehicle window to determine the coupling to both acoustic and turbulent pressure fields and compares these to the results from an SEA model. The interior acoustic intensity radiating from the window during road tests is also used to validate the results.
Journal Article

Thermal Flow Analysis of Hybrid Transaxle Surface Using Newly-Developed Heat Flux Measurement Method

2015-04-14
2015-01-1652
This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
Technical Paper

The World's First Transverse 8-Speed Automatic Transmission

2013-04-08
2013-01-1274
We have developed the world's first 8-speed automatic transmission for transverse FWD/4WD vehicles. The aim of this new automatic transmission was to achieve world-class fuel economy while offering both smooth gear shift and sporty shift feeling suitable for luxury cars. This has been accomplished using wide spread gear ratio, outstanding low drag components and highly efficient hydraulic control system. In addition, we have achieved the compactness similar to current 6-speed automatic transmission by adopting new gear train and compact clutch layout. In this paper, the detail of this automatic transmission is introduced.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

2018-04-03
2018-01-0506
Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Technical Paper

Super Olefin Polymer for Material Consolidation of Automotive Interior Plastic Parts

1996-02-01
960296
A new automotive interior component material, TSOP-5 has been developed by refining the technology utilized to develop TSOP-1, the high modulus and high flow material for bumper covers. This new interior component material has excellent molding capability (MI=30dg/min.) yet still maintains high impact resistance which enables the material to be used in areas such as the dash board as well as trim covers requiring to meet the FMVSS 214, the new side impact regulation or the FMVSS 201, the new soft upper trim regulation.
Technical Paper

Study of Fuel Flow Rate Change in Injector for Methanol Fueled S.I. Engine

1995-02-01
950071
The change of the fuel flow rate in an injector with mileage accumulation causes poor drivability and exhaust emission deterioration in Otto-type methanol fueled vehicles with a multi-point fuel injection system. This is one of the serious problems which needs to be solved for the practical use of methanol fueled vehicles. The investigation results reveal that the wear of contact surfaces between a valve needle and a valve body increases the resistance force for valve needle movement and causes the change of dynamic fuel flow rate in the injector. The effects of several countermeasures to solve this problem are evaluated.
Technical Paper

Study of Cooling Drag Reduction Method by Controlling Cooling Flow

2014-04-01
2014-01-0679
As the demand for improved fuel economy increases and new CO2 regulations have been issued, aerodynamic drag reduction has become more critical. One of the important factors to consider is cooling drag. One way to reduce cooling drag is to decrease the air flow volume through the front grille, but this has an undesirable impact on cooling performance as well as component heat load in the under-hood area. For this reason, cooling drag reduction methods while keeping reliability, cooling performance and component heat management were investigated in this study. At first, air flow volume reduction at high speed was studied, where aerodynamic drag has the greatest influence. For vehicles sold in the USA, cooling specification tends to be determined based on low speed, while towing or driving up mountain roads, and therefore, there may be extra cooling capacity under high speed conditions.
Technical Paper

Stability of a One Box Type Vehicle in a Cross-Wind-An Analysis of Transient Aerodynamic Forces and Moments

1988-10-01
881878
One-box type vehicles are especially liable to a loss of stability when entering a region of cross-wind. The reasons for this instability were investigated using scale models and by means of a mathematical simulation. Results indicated that yawing moment attains a peak at a precise position of the vehicle relative to the cross-wind. Visualization of the air flow and measurement of the pressure distributions established the cause of the phenomenon. Furthermore a study was conducted into the effects of body shape on stability and the efficacy of various modifications was assessed.
Technical Paper

Simulator Motion Sickness Evaluation Based on Eye Mark Recording during Vestibulo-Ocular Reflex

2014-04-01
2014-01-0441
The driving simulator (DS) developed by Toyota Motor Corporation simulates acceleration using translational (XY direction) and tilting motions. However, the driver of the DS may perceive a feeling of rotation generated by the tilting motion, which is not generated in an actual vehicle. If the driver perceives rotation, a vestibulo-ocular reflex (VOR) is generated that results in an unnecessary correction in the driver's gaze. This generates a conflict between the vestibular and visual sensations of the driver and causes motion sickness. Although such motion sickness can be alleviated by reducing the tilting motion of the DS, this has the effect of increasing the amount of XY motion, which has a limited range. Therefore, it is desirable to limit the reduction in the tilting motion of the DS to the specific timing and amount required to alleviate motion sickness. However, the timing and extent of the VOR has yet to be accurately identified.
Journal Article

Reducing Vehicle Glass Sensitivity to Turbulent Pressure

2021-08-31
2021-01-1125
Vehicle interior wind noise is typically managed through the overall exterior geometry of the vehicle, mirror shape and mounting location, sealing features and glass thickness and damping. Prior research has distinguished between contribution of fluctuating pressure due to air turbulence as compared to acoustic pressure to a passenger vehicles exterior at highway speeds. Because of the large difference in propagation speed between turbulent and acoustic pressure for on-road passenger vehicles, the structural response of the glass to turbulent versus acoustic pressure is not the same. The acoustic coincidence frequency of door glass is typically in the 2-3 kHz range. Turbulent coincidence frequency is much lower, and the effective transmission loss (TL) of the glass depends on the mix of turbulent and acoustic pressure on the exterior surface of the glass.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Properties of Zn-Fe Alloy Electroplated Steel Sheets

1984-02-01
840214
We have taken notice of Zn-Fe alloy electroplating with an eye to developing new corrosion-resistant steel sheets for automotive use with both cosmetic corrosion resistance and perforating corrosion resistance, and as a result of investigations into its paintability and corrosion resistance over the whole range of its compositions, we have come to a conclusion that steel sheets with two-layer Zn-Fe alloy electroplating that consists of a thin upper layer with a 75 to 85% Fe content and a lower layer with a 10 to 20% Fe content is the best choice.
Technical Paper

New Lighting System for Electronic Analog Clusters

1990-02-01
900675
The development of a high tech image analog cluster providing good readability is required by today's customer. To satisfy this trend, we have developed a highly unique analog cluster, which features very sharp white lit pointers with evenly illuminated white dials on a black acrylic face. These features are primarily achieved through two new lighting sources: 1. Pointers made from thin, lightweight Cold Cathode Discharge Tubes. This pointer creates very high brightness, regardless of temperature, by enclosing xenon gas in the tube, and was designed into a single side electrode structure. 2. Circular shape Cold Cathode Tube Installed Behind Each Dial Applique. This application creates very bright high quality illumination. In this session, we would like to introduce the construction and system of two new lighting sources for lexus, LS400. This technology provide improved readability.
Technical Paper

Low Frequency Noise Reduction by Improving Sound Insulation Materials

1995-05-01
951241
Conventionally, sound insulation materials have been applied to control interior noise above 500 Hz, and damping materials to control interior noise below 500 Hz. In this paper, the noise control component for vehicle panels, which consists of damping material and sound insulation material, is investigated by using a two-degrees-of-freedom system. The investigation shows that sound insulation material can be effective in reducing interior noise below 500 Hz if its stiffness is reduced. This stiffness depends not only on the spring of the material itself but also on its pneumatic spring which is determined by air-flow resistance. This paper concludes with applications of techniques to reduce interior noise below 500 Hz by improving sound insulation materials.
Technical Paper

Large Eddy Simulation of Spray Injection to Turbulent Duct Flow from a Slit Injector

2007-04-16
2007-01-1403
The behavior of spray injections to turbulent duct flows from a slit injector for direct-injection gasoline engines was investigated using a combination of large eddy simulation (LES) and Lagrangian discrete droplet model (DDM). As a result, diffusion of droplets in stronger turbulent flows was observed at a later stage of the injection. Moreover, we compared calculation and experimental results by generating a pseudo-particle image from the calculation result.
Technical Paper

In-Cylinder Gas Motion of Multivalve Engine-Three Dimensional Numerical Simulation

1986-02-01
860465
The characteristic of In-Cylinder gas motion of a multivalve engine is compared with a single intake valve engine, which have been predicted by a three-dimensional numerical simulation and flow visualization. The measured intake valve outlet velocity from helical and straight port was adopted as the boundary conditions. The computer graphics technique has been utilized to express the predicted numerical results as moving picture like visualized flow. This flow pattern was compared with the actual flow pattern visualized with metaldehyde as the tracer using the bottom viewed engine, which showed good agreement. The prediction for the multivalve engine showed that the swirl velocity is rapidly reduced by interaction between the flows from the two port, but the turbulence kinetic energy is similar to that in the engines with a single intake valve with helical port.
Technical Paper

High-Reliability Low-Cost Gold Plating Connector

1993-03-01
930426
The authors developed a high-reliability low-cost gold-plated connector for automobiles. The connector is covered with three plated layers, nickel, palladium-nickel alloy, and gold. The three-layer plating helps to reduce the required thickness of gold. This paper describes the reasons why palladium-nickel plating was adopted and compares the corrosion resistance, oxidation resistance and wear resistance of three-layer-plated materials with those of conventional gold-plated materials. In addition, the characterisitics of three-layer-plated connectors were compared with those of conventional gold-plated connectors. It was found that the reliability of three-layer-plated connectors was as high as that of conventional gold-plated connectors.
Technical Paper

Friction Reduction Effect of the New Concept Bearing with Partial Twin Grooves in Cold Condition

2015-09-01
2015-01-2038
Engine friction reduction is an effective means to improve fuel consumption. Fluid friction reduction of main bearing is examined for engine friction reduction in cold condition. As one of the examinations, it was focused on low temperature of lubricating oil in the early stage during engine cold start. In hydrodynamic lubrication, the oil film temperature is maintained by balance between heat generation and heat transfer. The heat generation is generated by shear of lubricating oil. The factors of the heat transfer, the following elements are considered as follows, A) The heat transfer to a crank shaft, B) The heat transfer to a bearing, C) The heat transfer by convection. If the heat generation is constant, oil film temperature is increased by reduction of heat transfer. It is considered that the reduction of oil leakage and reduction of the heat transfer by convection is equivalent.
X