Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Thermal Analysis of Timing Belt

1989-09-01
891988
This paper describes an analysis of the rise in timing belt temperature occuring under high engine speed operation that was made to establish the cause of heat deterioration of the belt materials. Surface temperatures of the belt were accurately measured by correcting thermo-vision detected radiations to eliminate environmental radiation. The temperature profile of a belt cross-section was obtained by a specially developed thermo-couple device. The experimental results indicated that heat generated by the belt contributes significantly to the temperature rise and that the primary cause of the heat generation is bending hysteresis of the belt cords. In addition, a description is made of a method of calculating the rate of heat generation in the belt. In this simulation method, the energy dissipated as heat is calculated from the bending strains and loss moduli of the belt materials. Calculated results were found to agree well with experimental results.
Technical Paper

Numerical Study of Mixture Formation and Combustion Processes in a Direct Injection Gasoline Engine with Fan-Shaped Spray

2001-03-05
2001-01-0738
Numerical 3-D simulations are performed for the improvement of the new direct injection gasoline engine. A solution based local grid refinement method has been developed in order to reduce the CPU time. This method has been incorporated into the CFD program (STAR-CD) with in-house spray and combustion models. Calculation results were compared with the experimental data taken by the LIF technique, and good agreement was obtained for the mixture formation and combustion processes. Some calculations were carried out for the fuel-air mixture formation process during late injection stratified combustion and the following results were obtained. The unburnt fuel has a tendency to remain in the side of the piston cavity at the latter part of the combustion period. To reduce the amount of unburnt fuel, it was shown that the combination of a thin thickness fan spray and compact cavity forms a spherical mixture, suitable for combustion.
Technical Paper

New Technology for Reducing the Power Consumption of Electrically Heated Catalysts

1994-03-01
940464
A new heating strategy for electrically heated catalysts has been developed which reduces power consumption while achieving the desired hydrocarbon conversion. The relationship between catalyst volume and power consumption is presented. Observations of catalytic reactions by a thermoviewer camera and mathematical simulations are used to optimize the heating pattern. Significant reductions in power consumption, while maintaining conversion efficiency, are reported by heating only the front face of the catalyst. However, prior to mass production additional work is required to improve durability, and reliability and to resolve manufacturing issues.
Technical Paper

Mixture Preparation and HC Emissions of a 4-Valve Engine with Port Fuel Injection During Cold Starting and Warm-up

1995-02-01
950074
In order to reduce tail-pipe hydrocarbon emissions from SI gasoline engines, rapid catalyst warm-up and improvement of catalyst conversion efficiency are important. There are many reports which have been published by manufacturers and research institutes on this issue. For further reduction of tail-pipe hydrocarbon emissions, it is necessary to reduce engine-out hydrocarbon emissions and to improve after treatment, during the time the catalyst is not activated. This paper quantitatively analyzed the fuel amount of intake port and cylinder wall-wetting, burned fuel and engine-out hydrocarbon emissions, cycle by cycle in firing condition, utilizing a specially designed analytical engine. The effect of mixture preparation and fuel properties for engine-out hydrocarbon emissions, during the cold engine start and warm-up period, were quantitatively clarified.
Technical Paper

Measurement of Flame Temperature Distribution in Engines by Using a Two-Color High Speed Shutter TV Camera System

1989-02-01
890320
A two-color high speed shutter TV camera system has been developed as a new sensing device for measuring the flame temperature in engines. The TV camera system can measure the radiant intensities of high temperature substances accurately and rapidly. And, the two-dimensional temperature distribution can be easily calculated from the radiant intensities by using an image processor. This system is applicable to measurement of flame temperatures in diesel and gasoline engines. The relation between the progress of combustion phenomena and the measured temperature distribution is clearly explained. It is confirmed that the system is effective for measurement of the flame temperature distribution in engines.
Technical Paper

Analysis of Cylinder Bore Distortion During Engine Operation

1995-02-01
950541
A calculation method of the bore distortion during engine operation was developed. This method can consider the sliding effect of the cylinder head on the top dock of the cylinder block. The bore distortion during engine operation calculated by this method agrees with that measured by Fujimoto, better than that calculated by conventional method. Calculated results for a Toyota 4-cylinder in-line 1.5L engine showed that thermal distortion has larger effects on the cylinder bore distortion during engine operation than cylinder head clamping distortion.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

1995-02-01
950044
In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
X