Refine Your Search

Topic

Author

Search Results

Technical Paper

Vision of Mobile Information Services

2000-11-01
2000-01-C017
As wireless technologies evolve, in-vehicle information services are becoming more and more essential to vehicle users. In contrast with information services in the home, in-vehicle information services emphasize the use of information to make driving more comfortable, rather than simply displaying information during driving. In particular, traffic information is, unlike other kinds of information, effective in getting to a destination and therefore, must be real-time to be useful. In Japan, car navigation systems have a large market penetration; dynamic route guidance systems (DRGS) operating in concert with navigation systems have been popular since 1995. This paper discusses mobile information services including DRGS. The focus is on the Japanese market where navigation technologies are the most advanced.
Technical Paper

Visibility Requirements for Automobile CRT Displays - Color, Contrast and Luminance

1988-02-01
880218
Display devices are required to have some fundamental functions which are brightness & gradation, colorfullness, resolution & sharpness, response time, and suitable size of the picture. Since the CRT (Cathode Ray Tube) is superior to the other display devices in these requirements, it can offer much information efficiently and effectively. Their visibility should not be evaluated only on the basis of some standards for office automation systems. From the point of view of human factors, visibility investigations of the CRTs for automobiles are examined. In this paper the relationship between the chromaticity difference and the luminance contrast for drivers to read the picture easily, and the luminance of the background in the CRTs for drivers not to be dazzled in the nighttime driving are clarified.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Vehicle Stability Control in Limit Cornering by Active Brake

1996-02-01
960487
Improvement of vehicle dynamics in limit cornering have been studied. Simulations and tests have verified that vehicle stability and course trace performance in limit cornering have been improved by active brake control of each wheel. The controler manages vehicle yaw moment utilizing difference braking force between left and right wheels, and vehicle deceleration utilizing sum of braking forces of all wheels.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Toyota's New Six-Speed Automatic Transmission A761E for RWD Vehicles

2004-03-08
2004-01-0650
Toyota Motor Corporation has recently developed a new six-speed automatic transmission (A761E) for Front Engine Rear Wheel Drive (FR) vehicles. Following the general trend of increased shift stages and a wider range of gear ratios, this six-speed automatic transmission has been developed with attention paid to the gear steps and a wider range of gear ratios. By balanced selection of close-ratio gears in a wider range, the change greatly improves the power performance and fuel economy of the vehicle. To further improve fuel economy we have adopted new technologies such as low-viscosity ATF, neutral control, and deceleration control by extending the fuel cut range (reset speed). We have also adopted a flat-shaped torque converter, small solenoids, an aluminum oil pump cover, etc. to realize the lightest six-speed automatic transmission in the world.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Toyota's New Five-Speed Automatic Transmission A750E/A750F for RWD Vehicles

2003-03-03
2003-01-0595
Toyota Motor Corporation has developed a new five-speed automatic transmission (A750E/A750F) for longitudinal front engine rear wheel drive (RWD) vehicles. The development of this transmission has been aimed at improving fuel economy and power performance, achieving the world's top-level weight and compactness, while maintaining high torque capacity. In order to achieve this purpose, the gear train, torque converter, and other components are completely changed, and advanced technology has been applied. Moreover, this automatic transmission has achieved high-quality shift feel and quiet performance. This paper describes the major features and performance of this transmission in detail.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

Toyota Electronic Modulated Suspension (TEMS) System for the 1983 Soarer

1984-02-01
840341
TOYOTA MOTOR CORPORATION had developed the world's first microprocessor controlled suspension system, Toyota Electronic Modulated Suspension (TEMS), which is now being offered on the Toyota Soarer from Feb. '83. This system consists of sensors, switches, electronic control unit (ECU), actuators and shock absorbers. TEMS uses a microprocessor to adjust the damping forces of the front and rear shock absorbers. As a result, suspension can be tuned in two stages (hard and soft cushioning) and driver can choose three control modes (AUTO, SPORT, NORMAL). In AUTO mode, the TEMS system has achieved attitude controls (i.e. squat control, roll control and nosedive control). The TEMS system achieved a 15 - 30% decrease of squat, a 20 - 30% decrease of roll angle, a 10 - 30% decrease of nose-dive and a 30 - 40% decrease of shift-squat.
Technical Paper

Toyota Electro Multivision

1988-02-01
880220
This paper describes the newest CRT display system named “Toyota Electro Multivision”, released in the '88 model Toyota Crown. This system has grown to be a total information system, having multiple new functions, including control, operation and displays for the “hands free” phone. This new system uses a compact disc as its memory media. Here we introduce our design concept for the CRT display system, and outline the system and its key technologies.
Technical Paper

Toyota AA80E 8-Speed Automatic Transmission with Novel Powertrain Control System

2007-04-16
2007-01-1311
Toyota has developed the world's first 8-speed automatic transmission (AA80E) for RWD automobiles. The transmission will first be used in the all-new Lexus LS460. In addition, a novel control system has been developed to maximize the predictability, response, efficiency, and initial quality of the powertrain while utilizing the high number of gear steps.
Technical Paper

Torque Converter Clutch Slip Control System

1995-02-01
950672
The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

The i-REAL Personal Mobility Vehicle

2011-05-17
2011-39-7242
The need for small personal mobility vehicles is growing as urbanization, the aging of society, traffic congestion, and parking become major issues, particularly in inner-city areas. The aging of society also means that more short trips within communities will be made. The i-REAL personal mobility vehicle is a next-generation single-passenger electric vehicle that enables the driver to move around town using a smaller amount of energy. This compact EV has three wheels: two front wheels driven by in-wheel motors and one rear wheel. According to the driver's needs, the i-REAL switches driving modes by changing its wheelbase. It can go slowly, allowing the driver to meet the eyes of passers-by when driving in parks, on sidewalks, or inside shopping malls. When on the road, it can lower its height and drive quickly like a bicycle or motorcycle. The body of the i-REAL leans automatically based on the speed and the turn angle to maintain the balance of the vehicle for any driver.
Technical Paper

The High-Speed In-Vehicle Network of Integrated Control System for Vehicle Dynamics

1991-02-01
910463
This paper describes the preliminary development of an on-board integration network for vehicle dynamics. The underlying philosophy is explained and the basic requirements are set forth. A design conforming to these requirements is presented and the experiments conducted to optimise the physical layer are described. An original token passing protocol is proposed for the access method and evaluated in comparison with the contention method by means of a specially devised simulation system.
Technical Paper

Structural and Material Changes in the Aging Thorax and Their Role in Crash Protection for Older Occupants

2005-11-09
2005-22-0011
The human body undergoes a variety of changes as it ages through adulthood. These include both morphological (structural) changes (e.g., increased thoracic kyphosis) and material changes (e.g., osteoporosis). The purpose of this study is to evaluate structural changes that occur in the aging bony thorax and to assess the importance of these changes relative to the well-established material changes. The study involved two primary components. First, full-thorax computed tomography (CT) scans of 161 patients, age 18 to 89 years, were analyzed to quantify the angle of the ribs in the sagittal plane. A significant association between the angle of the ribs and age was identified, with the ribs becoming more perpendicular to the spine as age increased (0.08 degrees/year, p=0.012). Next, a finite element model of the thorax was used to evaluate the importance of this rib angle change relative to other factors associated with aging.
Technical Paper

Stability of a One Box Type Vehicle in a Cross-Wind-An Analysis of Transient Aerodynamic Forces and Moments

1988-10-01
881878
One-box type vehicles are especially liable to a loss of stability when entering a region of cross-wind. The reasons for this instability were investigated using scale models and by means of a mathematical simulation. Results indicated that yawing moment attains a peak at a precise position of the vehicle relative to the cross-wind. Visualization of the air flow and measurement of the pressure distributions established the cause of the phenomenon. Furthermore a study was conducted into the effects of body shape on stability and the efficacy of various modifications was assessed.
Technical Paper

Simulator Motion Sickness Evaluation Based on Eye Mark Recording during Vestibulo-Ocular Reflex

2014-04-01
2014-01-0441
The driving simulator (DS) developed by Toyota Motor Corporation simulates acceleration using translational (XY direction) and tilting motions. However, the driver of the DS may perceive a feeling of rotation generated by the tilting motion, which is not generated in an actual vehicle. If the driver perceives rotation, a vestibulo-ocular reflex (VOR) is generated that results in an unnecessary correction in the driver's gaze. This generates a conflict between the vestibular and visual sensations of the driver and causes motion sickness. Although such motion sickness can be alleviated by reducing the tilting motion of the DS, this has the effect of increasing the amount of XY motion, which has a limited range. Therefore, it is desirable to limit the reduction in the tilting motion of the DS to the specific timing and amount required to alleviate motion sickness. However, the timing and extent of the VOR has yet to be accurately identified.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

2018-04-03
2018-01-0563
Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
X