Refine Your Search

Topic

Author

Search Results

Technical Paper

Waste Heat Recovery of Passenger Car Using a Combination of Rankine Bottoming Cycle and Evaporative Engine Cooling System

1993-03-01
930880
Rankine bottoming system, which operates on waste heat of engine cooling, has been developped to improve the fuel economy of a passenger car. Evaporative engine cooling system is utilized to obtain high thermal efficiency and simplicity of the Rankine bottoming system. The bottoming system uses HCFC123 as a working fluid, and scroll expander as a power conversion unit. The results indicate that energy recovery, which depends on the ambient temperature, is almost 3 percent of engine output power at ambient temperature of 25°C.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Vehicle Stability Control in Limit Cornering by Active Brake

1996-02-01
960487
Improvement of vehicle dynamics in limit cornering have been studied. Simulations and tests have verified that vehicle stability and course trace performance in limit cornering have been improved by active brake control of each wheel. The controler manages vehicle yaw moment utilizing difference braking force between left and right wheels, and vehicle deceleration utilizing sum of braking forces of all wheels.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Toyota's World First 8-Speed Automatic Transmission for Passenger Cars

2007-04-16
2007-01-1101
TOYOTA has developed the world's first eight-speed automatic transmission (AA80E) for front-engine, rear-drive passenger cars. The AA80E developed for high-torque engines raises the level of power performance and fuel efficiency. To meet the size requirements needed for mounting in a passenger car application, an 8-speed geartrain, torque converter, transmission case and hydraulic control device were all newly-developed. Furthermore, the AA80E has benefited from technical developments to achieve an extremely high level of quietness and shifting performance. In this paper, the details of the AA80E are introduced.
Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Toyota's New Six-Speed Automatic Transmission A761E for RWD Vehicles

2004-03-08
2004-01-0650
Toyota Motor Corporation has recently developed a new six-speed automatic transmission (A761E) for Front Engine Rear Wheel Drive (FR) vehicles. Following the general trend of increased shift stages and a wider range of gear ratios, this six-speed automatic transmission has been developed with attention paid to the gear steps and a wider range of gear ratios. By balanced selection of close-ratio gears in a wider range, the change greatly improves the power performance and fuel economy of the vehicle. To further improve fuel economy we have adopted new technologies such as low-viscosity ATF, neutral control, and deceleration control by extending the fuel cut range (reset speed). We have also adopted a flat-shaped torque converter, small solenoids, an aluminum oil pump cover, etc. to realize the lightest six-speed automatic transmission in the world.
Technical Paper

Toyota's New Six-Speed Automatic Transaxle U660E for FWD Vehicles

2006-04-03
2006-01-0847
Toyota Motor Corporation has developed a new six-speed automatic transaxle (U660E) for Front Wheel Drive (FWD) vehicles. Component parts of U660E are completely redesigned. By combining an innovative gear train which Toyota originally invented and newer technologies, U660E has achieved outstanding fuel economy, smooth and quick shift performance and quietness in a lightweight package among Automatic Transaxles (AT) with similar torque capacity.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Toyota's New Five-Speed Automatic Transmission A750E/A750F for RWD Vehicles

2003-03-03
2003-01-0595
Toyota Motor Corporation has developed a new five-speed automatic transmission (A750E/A750F) for longitudinal front engine rear wheel drive (RWD) vehicles. The development of this transmission has been aimed at improving fuel economy and power performance, achieving the world's top-level weight and compactness, while maintaining high torque capacity. In order to achieve this purpose, the gear train, torque converter, and other components are completely changed, and advanced technology has been applied. Moreover, this automatic transmission has achieved high-quality shift feel and quiet performance. This paper describes the major features and performance of this transmission in detail.
Technical Paper

Toyota New Four-Speed Automatic Transmission for Front Wheel Drive Vehicles

1984-02-01
840049
The design requirement for more efficient vehicle moves a compact car toward front wheel drive arrangement, which requires an entire redesign of its power train. Toyota, with systematic approach from its planning stage, has developed a new automatic transmission series including one 3-speed and two 4-speed transmissions. An extensive examination on gear train arrangements enabled the 3-speed light, compact and highly reliable under the arrangement of Simpson gear train, and freewheel shifts with one-way clutches at every shifting. Two different 4th gear packages with freewheel shift are combined with the 3-speed unit to provide the versatility for the 4-speed units in various installations. Besides, these transmissions feature lock-up clutch converter, oil pump of a new tooth profile and two different control systems: hydraulic and electro-hydraulic.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

Toyota Electronic Modulated Suspension (TEMS) System for the 1983 Soarer

1984-02-01
840341
TOYOTA MOTOR CORPORATION had developed the world's first microprocessor controlled suspension system, Toyota Electronic Modulated Suspension (TEMS), which is now being offered on the Toyota Soarer from Feb. '83. This system consists of sensors, switches, electronic control unit (ECU), actuators and shock absorbers. TEMS uses a microprocessor to adjust the damping forces of the front and rear shock absorbers. As a result, suspension can be tuned in two stages (hard and soft cushioning) and driver can choose three control modes (AUTO, SPORT, NORMAL). In AUTO mode, the TEMS system has achieved attitude controls (i.e. squat control, roll control and nosedive control). The TEMS system achieved a 15 - 30% decrease of squat, a 20 - 30% decrease of roll angle, a 10 - 30% decrease of nose-dive and a 30 - 40% decrease of shift-squat.
Technical Paper

Toyota AA80E 8-Speed Automatic Transmission with Novel Powertrain Control System

2007-04-16
2007-01-1311
Toyota has developed the world's first 8-speed automatic transmission (AA80E) for RWD automobiles. The transmission will first be used in the all-new Lexus LS460. In addition, a novel control system has been developed to maximize the predictability, response, efficiency, and initial quality of the powertrain while utilizing the high number of gear steps.
Technical Paper

Torque Converter Clutch Slip Control System

1995-02-01
950672
The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

The i-REAL Personal Mobility Vehicle

2011-05-17
2011-39-7242
The need for small personal mobility vehicles is growing as urbanization, the aging of society, traffic congestion, and parking become major issues, particularly in inner-city areas. The aging of society also means that more short trips within communities will be made. The i-REAL personal mobility vehicle is a next-generation single-passenger electric vehicle that enables the driver to move around town using a smaller amount of energy. This compact EV has three wheels: two front wheels driven by in-wheel motors and one rear wheel. According to the driver's needs, the i-REAL switches driving modes by changing its wheelbase. It can go slowly, allowing the driver to meet the eyes of passers-by when driving in parks, on sidewalks, or inside shopping malls. When on the road, it can lower its height and drive quickly like a bicycle or motorcycle. The body of the i-REAL leans automatically based on the speed and the turn angle to maintain the balance of the vehicle for any driver.
Technical Paper

The Humidity Control System Applied to Reduce Ventilation Heat Loss of HVAC Systems

2011-04-12
2011-01-0134
Vehicles have been more required to save energy against the background of the tendency of ecology. As the result of improving efficiency of internal combustion engines and adoption of electric power train, heat loss from engine coolant, which is used to heat the cabin, decreases and consequently additional energy may be consumed to maintain thermal comfort in the passenger compartment in winter. This paper is concerned with the humidity control system that realizes reduction of ventilation heat loss by controlling recirculation rate of the HVAC system by using highly accurate humidity sensor to evaluate risk of fogging on the windshield. As the results of the control, fuel consumption of hybrid vehicles decreases and maximum range of electric vehicles increases.
Technical Paper

The High-Speed In-Vehicle Network of Integrated Control System for Vehicle Dynamics

1991-02-01
910463
This paper describes the preliminary development of an on-board integration network for vehicle dynamics. The underlying philosophy is explained and the basic requirements are set forth. A design conforming to these requirements is presented and the experiments conducted to optimise the physical layer are described. An original token passing protocol is proposed for the access method and evaluated in comparison with the contention method by means of a specially devised simulation system.
X