Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Photographic and Three Dimensional Numerical Studies of Diesel Soot Formation Process

1990-10-01
902081
Soot formation process was examined by high speed photographs, using a single cumbustion diesel engine with a transparent swirl chamber. Fuel-air mixture and flames, and soot clouds were visualized by the schlieren method and the back-illuminated method, respectively. A three dimensional simulation program with soot formation and oxidation models was developed to clarify diesel soot formation processes. The models consist of several models previously proposed and partly improved in this study. Good agreement was obtained between calculated and experimental results. The following points were clarified through observation and numerical studies: (1) The main soot area is considerably smaller than luminous flame area, especially in the initial soot formation process. (2) The main soot cloud first appears in the tip region of fuel-air mixture, downstream of ignition position a few submilliseconds after the ignition.
Technical Paper

In-cylinder Quantitative Soot Concentration Measurement By Laser-Induced Incandescence

1999-03-01
1999-01-0508
Some methods to quantify the soot concentration by Laser-Induced Incandescence were developed using a flat flame burner in our previous work [1]. Those methods take the following points into consideration. (1)a correction of the LII signal intensity profile distorted by the laser attenuation due to soot clouds on the laser path, (2)a correction of the LII signal intensity attenuated by soot clouds between a camera and a measurement plane, (3)soot particle sizing up using 2-color LII signals and (4)conversion from a signal intensity to a soot concentration based on a calibration data. Using the methods, the accuracy of less than 10% was achieved in soot concentration measurement by a flat flame burner. In this study, the above methods were applied to an optically accessible single-cylinder diesel engine to measure in-cylinder soot concentration quantitatively.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 1: Comparison of Combustion and Exhaust Emission Characteristics among Representative Diesel Fuels

1998-10-19
982494
Combustion and exhaust emission characteristics were compared among three representative diesel fuels called “Base (corresponding to a Japanese market fuel)”, “Improved” and Swedish “Class-1” using both a modern small and an optically accessible single-cylinder DI diesel engines. In these tests, the relative amount of PM collected in the exhaust was “Base” >“Class-1” >“Improved” at almost all of the operating conditions. This means that “Class-1” generated more PM than “Improved”, even though “Class-1” has significantly lower distillation temperatures, aromatic content, sulfur, and density compared with “Improved”. There was little difference in combustion characteristics such as heat release rate pattern, mixture formation and flame development processes between these two fuels. However, it was found that “Class-1” contained more branches in the paraffin fraction and more naphthenes.
Technical Paper

Effect of Hydrocarbon Molecular Structure in Diesel Fuel on In-Cylinder Soot Formation and Exhaust Emissions

2003-05-19
2003-01-1914
Exhaust emissions and combustion characteristics from well-characterized diesel test fuels have been measured using two types of single-cylinder HSDI diesel engines. Data were collected at several fixed speed/load conditions representative of typical light-duty operating conditions and full-load performance (smoke-limited maximum torque) points. In addition, in-cylinder soot formation processes of these fuels were investigated via Laser Induced Incandescence (LII) using an optically accessible single-cylinder engine. The test fuels used in this study have been formulated with a sophisticated blending algorithm that systematically varies the hydrocarbon molecular structure in the fuels while maintaining the distillation characteristics of market diesel fuels. The following results have been obtained from this study. (1) The lowest PM emissions were observed with a fuel containing approximately 55% iso-paraffins and 39% n-paraffins with CN=52.5.
Technical Paper

Combustion Improvement for Reducing Exhaust Emissions in IDI Diesel Engine

1998-02-23
980503
Means for reducing the particulate matter (PM) from swirl chamber type diesel engines were searched out, and the reducing mechanisms were examined using an optically accessible engine. The following points were clarified in this study. 1. At light load, the suppression of the initial injection rate reduces PM, because SOF is reduced by the change in ignition point and smoke is reduced by the retarded flowout of the dense soot from the swirl chamber 2. Under medium and high load conditions, the main cause of the exhaust smoke is fierce spray-wall impingement which leads to fuel adhesion on the wall and the stagnation of a rich fuel-air mixture. 3. Enlarging swirl chamber volume ratio suppresses the formation of dense soot in the swirl chamber. In the main chamber, however, the soot oxidization becomes insufficient due to the mixing effect reduced by the essentially decreased chamber depth. 4.
Technical Paper

Cause of Exhaust Smoke and Its Reduction Methods in an HSDI Diesel Engine Under High-Speed and High-Load Conditions

2002-03-04
2002-01-1160
The cause of the exhaust smoke and its reduction methods in a small DI Diesel engine with a small-orifice-diameter nozzle and common rail F.I.E. were investigated under high-speed and high-load condition, using both in-cylinder observations and Three-dimensional numerical analyses. The following points were clarified during this study. At these conditions, fuel sprays are easily pushed away by a strong swirl, and immediately flow out to the squish area by a strong reverse squish. Therefore, the air in the cavity is not effectively used. Suppressing the airflow in a piston cavity, using such ideas as enlarging the piston cavity diameter or reducing the port swirl ratio, decreases the excessive outflow of the fuel-air mixture into the squish area, and allows the full use of air in the whole cavity. Hence, exhaust smoke is reduced.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
X