Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

42V Power Control System for Mild Hybrid Vehicle (MHV)

2002-03-04
2002-01-0519
In the 42V Mild Hybrid System introduced into market by Toyota for the first time in the world, the crankshaft using belt(s) drives the motor/generator (MG). The set-up employs an inverter unit to control the MG electronically. This paper describes the system configuration, operations, characteristic features and development results of the new power control system. The focus is on the MG, the inverter-for-MG-control and energy regeneration, as well as DC/DC converter for the power supply to the 14V devices.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

A New Material Recycling Technology for Automobile Rubber Waste

2003-10-27
2003-01-2775
A new material recycling technology for crosslinked rubber was developed using the continuous reactive processing method. In this process of producing reclaimed rubber, breakage of crosslinking points in the crosslinked rubber occurs selectively under the controls of shear stress, reaction temperature, and internal pressure in a modular screw type reactor. Deodorization during the process has also become possible by a newly developed method. The reclaimed rubber obtained from rubber waste generated from both automobile manufacturing products and post-consumer products shows excellent mechanical properties applicable to new rubber compounds. Furthermore, an enhanced rubber recycling process for producing thermoplastic elastomer (TPE) based on rubber waste has been established. The obtained TPE exhibits highly recoverable rubber elasticity and mechanical properties comparable to commercial TPE.
Technical Paper

A New V-8 Engine for the LEXUS LS 400

1989-09-01
892003
A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Technical Paper

A Study of Anticorrosive Technology in Super Long Life Coolant

2004-03-08
2004-01-0055
The protection of the environment has become a worldwide concern. To reduce the effects of engine coolant on the environment, ways to minimize the amount of coolant released into the environment were investigated. One option is to develop a super long-life coolant. The key issue in developing a long-life engine coolant is selecting an appropriate inhibitor. The inhibitor should be stable over time and completely anticorrosive. In general carboxylic acids are considered to be the class of inhibitors with the highest stability. However, various lab studies have shown the long-term use of monocarboxylic acid could form the foreign substance that causes blockage in radiators. Therefore, the mechanism leading to the formation of foreign substance was determined. A series of carboxylic acids and additives were evaluated. An optimum formulation was then determined, resulting in the development of the Super Long Life Coolant.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Technical Paper

A Study of Mechanism of Engine Idling Rattle Noise in Hybrid Transaxles

2020-04-14
2020-01-0421
Quietness is one of the most important characteristics for Hybrid Electric Vehicle quality. Reduction of the rattle noise caused by the torque fluctuation of an internal combustion engine can contribute to get a customer satisfaction. Toyota Hybrid System(THS) also has same requirement. Especially, the rattle noise during idling may happen discontinuously despite of periodical engine combustion excitation. It is necessary to study the mechanism and reduce the rattle noise. At lower engine torque range, decreasing the torsional damper’s stiffness can improve this condition as the manual transaxle done. However, the rattle noise can occur easily in conditions of relatively large torque spike inputs to the torsional system, such as the engine start/stop function of THS using the motor/generator in the transaxle.
Technical Paper

A Study on Energy-Absorbing Mechanism of Plastic Ribs

1998-09-29
982346
This paper describes development of a numerical simulation method for the FMVSS 201 testing. This method considers not only deformation but also fracture of plastic materials. a simplified calculation method for predicting the load during impact of absorbing plastic materials was introduced from the numerical simulation results. By applying this simplified calculator method trial and error in development would be reduced.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Journal Article

An Application of Model Based Combustion Control to Transient Cycle-by-Cycle Diesel Combustion

2008-04-14
2008-01-1311
From the viewpoint of the global warming restraint, reduction of exhaust emissions from diesel engine is urgent demand. However, it needs further development in combustion control besides after treatment system. Larger amount of EGR (Exhaust Gas Recirculation) is effective to reduce NOx emission. On the other hand, in-cylinder physical conditions greatly influence on self-ignition and combustion process, especially low O2 fraction charged gas owing to excessive EGR causes misfire. A drastic solution for this problem, fuel injection timing should be optimally manipulated based on predicted ignition delay period before actual injection. For this purpose, Toyota has developed a model based diesel combustion control concept to avoid the misfire and to keep low emission combustion includes in transient condition.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Journal Article

An Investigation of High Load (Compression Ignition) Operation of the “Naphtha Engine” - a Combustion Strategy for Low Well-to-Wheel CO2 Emissions

2008-06-23
2008-01-1599
A computational and experimental study has been carried out to assess the high load efficiency and emissions potential of a combustion system designed to operate on low octane gasoline (or naphtha). The “naphtha engine” concept utilizes spark ignition at low load, HCCI at intermediate load, and compression ignition at high load; this paper focuses on high load (compression ignition) operation. Experiments were carried out in a single cylinder diesel engine with compression ratio of 16 and a common rail injector/fuel delivery system. Three fuels were examined: a light naphtha (RON∼59, CN∼34), heavy naphtha (RON∼66, CN∼31), and heavy naphtha additized with cetane improver (CN∼40). With single fuel injection near top dead center (TDC) (diesel-like combustion), excessive combustion noise is generated as the load increases. This noise limits the maximum power, in agreement with the CFD predictions. The noise-limited maximum power increases somewhat with the use of single pilot injection.
Technical Paper

Analysis and Simplification of Thermal Endurance Tests of NOx Storage-Reduction Catalysts

2004-03-08
2004-01-1496
Our two types of NOx storage-reduction (NSR) catalyst have been tested under various conditions of thermal endurance; the performance of these catalysts have been regressed to give the formulas that enable to estimate the performance after thermal endurance; and we have found the method to simplify (shorten the duration of) the thermal endurance tests and that the thermal deterioration of NSR catalysts is controlled by the worst condition of endurance (at least approximately). The regression formula for the amount of potassium that contributes to the catalyst performance (active K) after the endurance has also been obtained. These formulas predict that the amount of active K is the least for the worst condition of endurance and suggest a difference in deterioration mechanism that reflects the performance between low and high temperatures and the portion of worse deterioration (front or rear).
Technical Paper

Analysis for Relationship between Vehicle NOx Emission and Roadside NO2 Concentration

2008-04-14
2008-01-0755
NO2 sources of roadside atmosphere at Matsubarabashi monitoring station in Tokyo were investigated analytically. The result showed that contribution of urban background is dominant from November to February and NO oxidation with O3 has large contribution from April to September. NO2 air quality standard will be achieved by reducing vehicle NOx emission to post-new long-term regulation level. The analytical method was verified by using our developed simulation system, which consists of micro traffic flow analyzer and CFD-based, unsteady-state diffusion with chemical reaction solver.
Technical Paper

Analysis for Vibration Caused by Starter Shaft Resonance

2016-04-05
2016-01-1319
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
Technical Paper

Analysis of EGR Cyclic Variations in a Direct Injection Gasoline Engine by Using Raman Scattering Method

2002-05-06
2002-01-1646
The Raman scattering method has been developed for the simultaneous, cycle by cycle measurement of HC, O2, H2O, and N2 in a direct injection gasoline engine with EGR. By using the Raman scattering method, the effect of EGR on stratified charge combustion can be investigated in a direct injection SI gasoline engine. The results show that (1) at the compression stroke homogeneous EGR gas exists, (2) variation of component mass fraction of EGR (qualitative fluctuation) introduced in the previous combustion cycle is the primary reason for EGR fluctuation, (3) under normal operating conditions, EGR fluctuation (component mass fraction and quantitative fluctuation) doesn't influence on the combustion fluctuation at the stratified charge operation.
Journal Article

Analysis of Influence of Snow Melting Agents and Soil Components on Corrosion of Decorative Chrome Plating

2016-04-05
2016-01-0539
The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
X