Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

2006-04-03
2006-01-0881
Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Technical Paper

Verification of High Frequency SiC On-Board Vehicle Battery Charger for PHV

2016-04-05
2016-01-1210
This paper presents a new application of a vehicle on-board battery charger utilizing high frequency Silicon Carbide (SiC) power devices. SiC is one of the most promising alternatives to Silicon (Si) for power semiconductor devices due to its superior material characteristics such as lower on-state resistance, higher junction temperature, and higher switching frequency. An on-board charger prototype is developed demonstrating these advantages and a peak system efficiency of 95% is measured while operating with a switching frequency of 250 kHz. A maximum output power of 6.06 kW results in a gravimetric power density of 3.8 W/kg and a volumetric power density of 5.0 kW/L, which are about 10 times the densities compared with the current Prius Plug-In Si charger. SiC technology is indispensable to eco-friendly PHV/EV development.
Technical Paper

Verification Test Results of Wireless Charging System

2016-04-05
2016-01-1155
Toyota Motor Corporation (TMC) began a wireless charging field test in February 2014. A wireless charging system was installed at the residences of test subjects with the aim of identifying issues related to convenience and installation in daily usage. The test vehicle was fabricated by installing a wireless charging system into a Prius PHV (Plug-in Hybrid Vehicle). The installed system had the same charging power as the cable charging system used on the base vehicle, and had a charging time of 1.5 hours. A high-frequency 85 kHz power supply and primary coil were produced for the charging infrastructure. To identify differences in charging behavior, the test subjects were asked to use the cable charging system for the first month before changing to the wireless charging system for two months. Data acquisition was performed by an on-board data logger and through interviews with the test subjects.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Technical Paper

Variation in Corrosion Resistance of Trivalent Chromate Coating Depending on Type of Zinc Plating Bath

2006-04-03
2006-01-1671
Trivalent chromate coating is replacing the conventional hexavalent chromate coating applied on zinc plating. Zinc plating uses one of three types of plating baths (zincate, cyanide and chloride) according to the characteristics required of subject parts. It has been recognized that trivalent chromate coating provides different corrosion resistance depending on the type of zinc plating bath used. Zinc plating with chromate coating were analyzed to clarify the cause of the corrosion resistance variation with the type of zinc plating bath. It has been revealed that the chromate coating thickness and the condition of top SiO2 layer vary with the type of zinc plating bath, resulting in corrosion resistance variation.
Technical Paper

Valve Train Dynamic Analysis and Validation

2004-01-08
2004-01-1457
In order to reduce engine development timing and cost, a numerical calculation has been developed by Toyota Motor Company and Toyota Technical Center to evaluate valve train systems. The goal is to predict valve_bounce speed, valve displacement, hydraulic lash adjuster motion and strain in the rocker arm. The numerical procedure combines finite element model and multi-body dynamic analysis. Normally, strain calculation is a two-step process. In the first step, engineers obtain the excitation from the dynamic analysis. In the second step, engineers use the forcing function from dynamic analysis to calculate strain and stress. The new approach in this paper, using ADAMS, calculates dynamic load and recover strain simultaneously. As the flexibility of the moving part (for example rocker arm) is taken into account in the equations of motion, ADAMS will calculate the modal strain. Based on the modal strain, the strain or stress at any given node(s) can be recovered.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Toyota’s New Hybrid Unit “L4A0”

2022-03-29
2022-01-0656
Toyota developed a new hybrid unit “L4A0” for the new Tundra, which creates both good drivability and environmental performance. To ensure off-road, towing performance and typical truck driving characteristics, the unit is based on a transmission with a torque converter and a multi-plate lock up clutch, with a motor-generator and K0 clutch installed between the engine and transmission. The motor-generator and K0 clutch are built into a module, making it possible to create new hybrid units by combining the module with various transmissions. The unit features many different motor controls. For example, in the case of step-in acceleration input, in order to achieve the desired output torque, typically a kick-down shift is necessary [1]; however, by utilizing “L4A0” both high response and high power output is achieved even without a kick-down shift. This is accomplished by assisting the engine with the motor-generator even when the engine torque is delayed at low engine speeds.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Toyota's New Shift-by-Wire System for Hybrid Vehicles

2004-03-08
2004-01-1112
In today's motorized society, various automotive technologies continue to evolve every day. Amid this trend, a new concept with respect to automatic transaxle gear-shifting has been developed. In order to materialize a new concept for shifting operation with a universal design in mind, a system has been developed: a shift-by-wire system developed specifically for hybrid vehicles. The greatest advantage of this new system is the lack of constraints associated with the conventional mechanical linkage to the transaxle. This allows freedom of design for the gear selection module. A revolutionary improvement in the ease of shifting has been realized by taking full advantage of this design freedom. In addition, this system contributes to an innovative design. For improved ease of operation, the operation force of the shift lever of this system has been dramatically reduced. For parking, the driver can engage the parking mechanism of the transaxle at the touch of a switch.
Technical Paper

Toyota Newly Developed 2VZ-FE Type Engine

1988-11-01
881775
Newly developed 2VZ-FE engine for CAMRY is a 2.5-liter water cooled and V-type 6-cylinder engine exported from TOYOTA for the first time. This engine has the TOYOTA original 4-valve DOHC system. That is, exhaust camshafts driven by intake camshafts using scissors gears. By its compact configuration with the gear driven camshafts, this V-type 6-cylinder engine is mounted on a front-wheel-drive vehicle which originally had an in-line 4-cylinder engine. By increasing IVZ-FE engine displacement (for domestic), compact pentroof-type combustion chambers, optimum air-fuel ratio and ignition timing by TCCS (TOYOTA Computer Controlled System) and other technologies, a high performance 153HP/5600rpm and a large torque 155ft·lbs/4400rpm have been achieved with a low fuel consumption.
Technical Paper

Three-Dimensional Shape Measurement With High-Energy X-Ray CT-Scan

2003-03-03
2003-01-1033
Digital engineering has been utilized in product development to improve the quality. The actual object was measured and digitized into the three-dimensional (3-D) data, and the requirement of evaluating and analyzing the CAD data has been increased in these activities. So, we developed the technology that measures the actual object and obtains the 3-D model data for general automotive parts. The features of this new system are high-speed and high-accuracy by using high energy X-ray CT technology and 3-D model data technology. 3-D model data can be obtained for about 5 hours in case of the engine block and the error is 0.1mm or less. We also show the examples of the new automotive parts development using this technology.
Technical Paper

Three-Dimension Deposited Soot Distribution Measurement in Silicon Carbide Diesel Particulate Filters by Dynamic Neutron Radiography

2011-04-12
2011-01-0599
Exhaust emissions are well known to have adverse impacts on human health. Studies have demonstrated that there is an association between ambient particulate matter (PM) levels and various harmful cardiopulmonary conditions. Soot exhaust from diesel engines can be a significant contributor to airborne pollutants. A key component in PM level control for a diesel engine is a diesel particulate filter (DPF). This device traps soot while allowing other exhaust gases to pass unhindered. However, the performance of diesel particulate filters can change with increasing soot loadings and thus may require regeneration or replacement. Improved understanding of diesel particulate filters is dependent upon the knowledge of the actual soot loading and the soot distribution within the DPF. Neutron radiography (NR) has been identified as an effective means of non-destructively identifying hydrogen or carbon adsorbed in PM.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Technical Paper

Theoretical Study on Spray Design for Small-Bore Diesel Engine

2016-04-05
2016-01-0740
1 Recently, demand for small-bore compact vehicle engines has been increasing from the standpoint of further reducing CO2 emissions. The generalization and formulation of combustion processes, including those related to emissions formation, based on a certain similarity of physical phenomena regardless of engine size, would be extremely beneficial for the unification of development processes for various sizes of engines. The objective of this study is to clarify what constraints are necessary for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 2: Comparative Analysis of Economic, Environmental, and Usability Benefits

2016-04-05
2016-01-1286
Introducing effective technologies to reduce carbon emissions in the transport sector is a critical issue for automotive manufacturers to contribute to sustainable development. Unlike the plug-in electric vehicles (PEVs), whose effectiveness is dependent on the carbon intensity of grid electricity, the solar hybrid vehicle (SHV) can be an alternative electric vehicle because of its off-grid, zero-emission electric technology. Its usability is also advantageous because it does not require manual charging by the users. This study aims at evaluating the economic, environmental, and usability benefits of SHV by comparing it with other types of vehicles including PEVs. By setting cost and energy efficiency on the basis of the assumed technology level in 2030, annual cost and annual CO2 emissions of each vehicle are calculated using the daily mileage pattern obtained from a user survey of 5,000 people in Japan and the daily radiation data for each corresponding user.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions

2016-04-05
2016-01-1287
In recent years, automakers have been developing various types of environmentally friendly vehicles such as hybrid (HV), plug-in hybrid (PHV), electric (EV), and fuel cell (FCV) vehicles to help reduce greenhouse gas (GHG) emissions. However, there are few commercial solar vehicles on the market. One of the reasons why automakers have not focused attention on this area is because the benefits of installing solar modules on vehicles under real conditions are unclear. There are two difficulties in measuring the benefits of installing solar modules on vehicles: (1) vehicles travel under various conditions of sunlight exposure and (2) sunlight exposure conditions differ in each region. To address these problems, an analysis was performed based on an internet survey of 5,000 people and publically available meteorological data from 48 observation stations in Japan.
X