Refine Your Search

Topic

Author

Search Results

Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Technical Paper

Validation of Control Software by Search-Based Testing Using Formal Methods

2016-04-05
2016-01-0034
As vehicle control software becomes larger and more complex, it is increasingly important to improve the efficiency of the software development process. This study developed search-based testing technology to increase the efficiency of the validation process. Search-based testing can generate dynamic test data automatically, but it tends to overlook the generation of correct test data to detect problems when the software has many branches and paths. To resolve this problem, a method was devised that combines search-based testing [1] and formal methods such as model checking. This paper describes this method and shows application examples of engine control.
Technical Paper

Validation of Control Software Specification Using Design Interests Extraction and Model Checking

2012-04-16
2012-01-0960
Automotive control systems such as powertrain control interact with the open physical environment, and from this nature, expensive prototyping is indispensable to capture a deep understanding of the system requirements and to develop the corresponding control software. Model-based development (MBD) has been promoted to improve productivity by virtual prototyping. Even with MBD, systematic validation of the software specification remains as a major challenge and it still depends heavily on individual engineers' skill and knowledge. Though the introduction of graphical software modeling improved the situation, it requires much time to identify the primal functions, so-called “design interests”, from a large complex model where irrelevant components are mixed with, and to validate it properly.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Technical Paper

Study of a Two-Degree-of-Freedom Exhaust System

1990-02-01
900164
An investigation was conducted into pressure pulsation in the exhaust port, which greatly affects volumetric efficiency and engine performance. From experiments using a single blow-down generator, it was established that the amplitude of the pressure pulsation increases as the manifold branch is lengthened and that large negative pressure synchronized with the timing of valve overlap can be obtained if a proper branch length is used. The performance of a 2ℓ test engine was optimized by varying the length of both the manifold branches and front pipe forks. It was found that whereas front pipe fork length affects engine performance over only a narrow range of engine speed, optimizing manifold branch length results in a considerable improvement over a wide engine speed range. In the course of optimizing the exhaust pipe manifold length of this two-degree-of-freedom exhaust system, abnormal exhaust noises were emitted at specific engine speeds during deceleration.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Technical Paper

Significance of Electronics Platforms and the Motivation for JasPar

2006-10-16
2006-21-0020
In recent vehicles, E/E architecture is defined and used as a platform to accommodate various electronics features for better development efficiency, lower cost and higher quality. As electronics features increase and integrated control systems make vehicle electronics more complex, good electronics platforms are vital for today's and future vehicle development. This paper first describes the evolution of vehicle electronics and its recent trend and then addresses the challenges facing vehicle electronics: ✓ More integrated control systems ✓ More software ✓ More networks ✓ Shorter time to market Finally, why JasPar1), Japan Automotive Software Platform and Architecture, was founded and how it is organized will be described including the working group activities on FlexRay implementation.
Technical Paper

ST-Lib: A Library for Specifying and Classifying Model Behaviors

2016-04-05
2016-01-0621
Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
Technical Paper

Real-time Long Horizon Model Predictive Control of a Plug-in Hybrid Vehicle Power-Split Utilizing Trip Preview

2019-12-19
2019-01-2341
Given a forecast of speed and load demands during a trip, a hybrid powertrain power-split Trajectory Optimization Problem (TOP) can be solved to optimize fuel consumption. This can be done on desktop to set performance benchmarks; however, it has been believed that the TOP could not be solved in real-time and is not a realizable controller. As such, several approximations of the TOP have been made in the interest of obtaining a real-time near-optimal controller, for example, Equivalent Consumption Minimization Strategies (ECMS) and their adaptive counterparts. These strategies decide on the power-split by, at each sampled time instant, minimizing a Horizon-0 (without predicting forward in time) composite function of fuel consumption and equivalent battery energy. The fuel economy that results from these strategies is highly sensitive to the calibration of the associated equivalence factor, and furthermore, must be chosen differently for different drive cycles.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Technical Paper

New Simulation Method Using Experimental Modal Analysis for Prediction of Body Deformation during Operation

2001-03-05
2001-01-0494
A method for predicting body deformation during operation, which cannot be measured by conventional methods, has been developed. The method creates a body model based on the characteristics extracted by modal analysis of the results of a vibration testing of an actual vehicle. The model is combined with a suspension model, using multibody dynamics software, and body deformation calculations are performed. In this paper, the influence of body deformation on vehicle controllability and stability is studied and the usefulness of the method is verified.
Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

Improving the Detection Accuracy of a Static Software Quality Evaluation Tool

2003-03-03
2003-01-0140
There are various standards to evaluate the quality of software. Tools to quantatively evaluate the quality of software have become available in recent year. Although these tools are effective, warning reports can become extensive, when the volume of software becomes large. And, the manpower to confirm the report also becomes large. Knowledge and experience are to analyze the warning report. Consequently, an oversight, a misapprehension, etc. may arise. To solve this problem, we are examining system to automate this work.
Journal Article

Hierarchical Accumulative Validation of Executable Control Specifications

2013-04-08
2013-01-0430
The application of Model-Based Development (MBD) techniques for automotive control system and software development have become standard processes due to the potential for reduced development time and improved specification quality. In order to improve development productivity even further, it is imperative to introduce a systematic Verification and Validation (V&V) process to further minimize development time and human resources while ensuring control specification quality when developing large complex systems. Traditional methods for validating control specifications have been limited by control specification scale, structure and complexity as well as computational limitations restricting their application within a systematic model-based V&V process. In order to address these issues, Toyota developed Hierarchical Accumulative Validation (HAV) for systematically validating functionally structured executable control specifications.
Technical Paper

Experimental Analysis of Acoustic Coupling Vibration of Wheel and Suspension Vibration on Tire Cavity Resonance

2007-05-15
2007-01-2345
It is difficult to improve tire cavity noise since the pressure of cavity resonance acts as a compelling force, and its low damping and high gain characteristics dominate the vibration of both the suspension and body. For this reason, the analysis described in this article aimed to clarify the design factors involved and to improve this phenomenon at the source. This was accomplished by investigating the acoustic coupling vibration mode of the wheel, which is the component that transmits the pressure of cavity resonance at first. In addition, the vibration characteristic of suspension was investigated also. A speaker-equipped sound pressure generator inside the tire and wheel assembly was developed and used to infer that wheel vibration under cavity resonance is a forced vibration mode with respect to the cavity resonance pressure distribution, not an eigenvalue mode, and this phenomenon may therefore be improved by optimizing the out-of-plane torsional stiffness of the disk.
Technical Paper

Engine Starting System Development by Belt Drive Mechanism

2002-03-04
2002-01-1086
The basic concept of the Toyota mild hybrid system is to provide a smooth and reliable engine restarting method from an idling stop, while at the same time being able to drive all of the accessories during the idling stop. This concept has been realized and marketed for the first time in the world, by utilizing a newly developed simulation of belt behavior to optimize the specification of the belt and its peripheral parts.
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration while Turning (First Report)

2016-04-05
2016-01-1674
The research described in this paper aimed to study the cornering resistance and dissipation power on the tire contact patch, and to develop an efficient direct yaw moment control (DYC) during acceleration and deceleration while turning. A previously reported method [1], which formulates the cornering resistance in steady-state cornering, was extended to so-called quasi steady-state cornering that includes acceleration and deceleration while turning. Simulations revealed that the direct yaw moment reduces the dissipation power due to the load shift between the front and rear wheels. In addition, the optimum direct yaw moment cancels out the understeer augmented by acceleration. In contrast, anti-direct yaw moment optimizes the dissipation power during decelerating to maximize kinetic energy recovery. The optimization method proved that the optimum direct yaw moment can be achieved by equalizing the slip vectors of all the wheels.
Technical Paper

Development of “Virtual and Real Simulator” for Engine

2001-03-05
2001-01-1355
We developed a progressive system, “virtual and real simulator (V&R-S)” for engine. To innovate the process of engine development, the test system creates dynamic load of drivetrain, wheel, body and road with the virtual vehicle model. We set the phenomena such as drivetrain vibration for reproducing object of this system. The load is transmitted to the engine crankshaft end as torque with the connecting shaft made of fiberglass. The mainly developed technologies are the dynamometer with rotational inertia as low as engine, correction method of transmitted torque error of connecting shaft by H-infinity control. Thanks to these, we achieved the capability of optimization for most of dynamic characteristics (emission, fuel consumption, drivability) on engine test bench. And we now be able to limit real vehicle test to the final tuning. As a result, we have realized new engine evaluation and optimization process.
X