Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Unsteady Aerodynamic Response of a Vehicle by Natural Wind Generator of a Full-Scale Wind Tunnel

2017-03-28
2017-01-1549
In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
Technical Paper

Effect of Aero Covers on Underfloor Wind Noise; Conclusions from a Wind Tunnel Validated Aero-Vibro-Acoustic Model

2022-03-29
2022-01-0310
Low frequency interior wind noise is typically dominated by underfloor flow noise. The source mechanisms are fluctuating surface pressure loading from both flow turbulence and acoustic field levels developed in the semi-reverberant cavity between floor and road. Previous studies have used computation fluid dynamics (CFD) to estimate the aero-acoustic loading applied to a vibro-acoustic model, which is then used to predict the transmitted interior wind noise. This paper reports a new perspective in two respects. First it uses novel surface pressure microphone arrays to directly measure the underfloor aero-acoustic loading in the wind tunnel. Second, it considers two different underfloor aerodynamic configurations - with and without lightweight aero cover panels, which are installed primarily to reduce aerodynamic drag.
Technical Paper

Development of Aerodynamic Drag Reduction around Rear Wheel

2021-04-06
2021-01-0962
Due to new CO2 regulations and increasing demand for improved fuel economy, reducing aerodynamic drag has become more critical. Aerodynamic drag at the rear of the vehicle accounts for approximately 40% of overall aerodynamic drag due to low base pressure in the wake region. Many studies have focused on the wake region structure and shown that drag reduction modifications such as boattailing the rear end and sharpening the rear edges of the vehicle are effective. Despite optimization using such modifications, recent improvements in the aerodynamic drag coefficient (Cd) seem to have plateaued. One reason for this is the fact that vehicle design is oriented toward style and practicality. Hence, maintaining flexibility of design is crucial to the development of further drag reduction modifications. The purpose of this study was to devise a modification to reduce rear drag without imposing additional design restrictions on the upper body.
X