Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Water Jacket Spacer for Improvement of Cylinder Bore Temperature Distribution

2005-04-11
2005-01-1156
For reduction of fuel consumption, a new device “Water Jacket Spacer” which improves temperature distribution of a cylinder block bore wall was developed. In the case of a conventional cylinder block, coolant flow concentrates at the bottom and middle region of the water jacket. While temperature of the upper bore wall is high (due to high-temperature combustion gas) the temperature of the lower bore wall is low, since its only function is to support the piston. When the developed spacer is inserted into a water jacket, the coolant flow concentrates at the upper part of the jacket. As a result, cooling ability to the upper bore wall was improved and temperature of lower bore wall was increased, thereby reducing fuel consumption.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Turbocharging the Chrysler 2.4L Engine

2003-03-03
2003-01-0410
A turbocharged version of the 2.4L engine has been developed by the Chrysler Group of DaimlerChrysler Corporation. This new engine is derived from the proven 2.4L 4-cylinder, with significant changes to achieve a durable, high performance package for the PT Cruiser vehicle. The package includes an integrated turbocharger / exhaust manifold, oil squirters for piston cooling, and numerous other upgrades to satisfy the demanding performance, emissions, and durability requirements unique to this powertrain. The purpose of this paper is to describe the mechanical changes to the base engine, the unique turbocharger configuration, and the new parts necessary to accommodate the higher output.
Technical Paper

Theoretical and Practical Aspects of Balancing a V-8 Engine Crankshaft

2005-05-16
2005-01-2454
Crankshafts must be balanced statically and dynamically before being put into service. However, without pistons and connecting-rod assemblies, a non-symmetric crankshaft is not in dynamic balance. Therefore, it is necessary to apply equivalent ring-weights on each of the crankpins of the crankshaft when balancing it on a dynamic balancing machine. The value of the ring weight must be accurately determined, otherwise all advantages that are derived from balancing would be of no avail. This paper analytically examines the theoretical background of this problem. Formulas for calculating the ring weights are derived and presented. These formulas are applicable to a generic class of crankshafts of V-type engines with piston pin offset. Also, practical consideration, such as the design and manufacturing of these ring weights, the method of testing, and correction is addressed.
Technical Paper

Theoretical Study on Spray Design for Small-Bore Diesel Engine

2016-04-05
2016-01-0740
1 Recently, demand for small-bore compact vehicle engines has been increasing from the standpoint of further reducing CO2 emissions. The generalization and formulation of combustion processes, including those related to emissions formation, based on a certain similarity of physical phenomena regardless of engine size, would be extremely beneficial for the unification of development processes for various sizes of engines. The objective of this study is to clarify what constraints are necessary for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes.
Technical Paper

The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly

2003-03-03
2003-01-1357
The existence of the cyclic variation of the flow inside an cylinder affects the performance of the engine. Developing methods to understand and control in-cylinder flow has been a goal of engine designers for nearly 100 years. In this paper, passive control of the intake flow of a 3.5-liter DaimlerChrysler engine was examined using a unique optical diagnostic technique: Molecular Tagging Velocimetry (MTV), which has been developed at Michigan State University. Probability density functions (PDFs) of the normalized circulation are calculated from instantaneous planar velocity measurements to quantify gas motion within a cylinder. Emphasis of this work is examination of methods that quantify the cyclic variability of the flow. In addition, the turbulent kinetic energy (TKE) of the flow on the tumble and swirl plane is calculated and compared to the PDF circulation results.
Journal Article

The Impact of Diesel and Biodiesel Fuel Composition on a Euro V HSDI Engine with Advanced DPNR Emissions Control

2009-06-15
2009-01-1903
In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

1990-02-01
900705
In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Study of Improvements in NOx Reduction Performance on Simultaneous Reduction System of PM and NOx

2005-10-24
2005-01-3884
Performance improvements were studied for the diesel particulate and NOx reduction system (DPNR), a system that simultaneously reduces NOx and Particulate Matter (PM) from diesel engine exhaust gas. The experimental system (hereinafter called the “dual DPNR”) consists of two DPNR catalysts arranged in parallel, each provided with an exhaust throttle valve downstream to control the exhaust gas flow to the catalyst, plus a fuel injector that precisely controls the air-fuel ratio and the catalyst bed temperature. The fuel injector is used to supply a rich mixture to the DPNR catalyst, and the flow of exhaust gas is switched between the two catalysts by operating the exhaust throttle valves alternately. Tests were conducted with the engine running at steady state. The results indicated that the NOx reduction performance dramatically improved and the loss of fuel economy from the NOx reduction reduced.
Technical Paper

Small Bore Diesel Engine Combustion Concept

2015-04-14
2015-01-0788
Small bore diesel engines often adopt a two-valve cylinder head and a non-central injector layout to expand the port flow passage area. This non-central injector layout causes asymmetrical gas flow and fuel distribution, resulting in worse heat losses and a less homogenous fuel-air mixture than an equivalent four-valve cylinder head layout with a central injector. This paper describes the improvement of piston bowl geometry to achieve a more homogeneous gas flow and fuel-air mixture. This concept reduced fuel consumption by 2.5% compared to the original piston bowl geometry, while also reducing NOx emissions by 10%.
Technical Paper

Simultaneous PM and NOx Reduction System for Diesel Engines

2002-03-04
2002-01-0957
A new after-treatment system called DPNR (Diesel Particulate-NOx Reduction System) has been developed for simultaneous and continuous reduction of particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust gas. This system consists of both a new catalytic technology and a new diesel combustion technology which enables rich operating conditions in diesel engines. The catalytic converter for the DPNR has a newly developed porous ceramic structure coated with a NOx storage reduction catalyst. A fresh DPNR catalyst reduced more than 80 % of both PM and NOx. This paper describes the concept and performance of the system in detail. Especially, the details of the PM oxidation mechanism in DPNR are described.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Technical Paper

Reduction of Friction Losses in Crankcase at High Engine Speeds

2006-10-16
2006-01-3350
Recently, engines achieving high power levels are becoming increasingly common. The trend is toward increasing the inflow of lubricating oil into the crankcase through several factors (for example, increasing the flow rate of the cooling oil jets in order to reduce the thermal load of the pistons). In addition, the mechanical losses induced by the motion of the crankshaft and connecting rods through the additional oil are intensified due to the higher engine speeds at maximum power. In this article, we confirmed a method of separating the pumping loss and the agitation loss by measuring the pressure in the crankcase and an empirical formula was found for predicting pumping loss from displacement and ventilating area. We also investigated the effect of reducing the lubrication oil flow rate, as well as other factors affecting the oil flow, on the mechanical loss at high engine speeds.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

New Cordierite Diesel Particulate Filter Material for the Diesel Particulate - NOx Reduction System.

2004-03-08
2004-01-0953
The regulation of emissions discharged from diesel engines has become stricter worldwide. The regulatory values allowed for particulate matter (PM) as well as NOx will be lowered, especially in the Europe Euro 5, the U.S. EP 07, and the new Japanese long-term regulations. Since there is a tradeoff between the PM and NOx that are discharged from diesel engines, new emission reduction measures will be needed in order to greatly reduce both at the same time. By coating DPFs (Diesel Particulate Filters), which have been studied before, with NOx storage reduction catalysts, it has been found that simultaneous reduction of PM and NOx is possible, and so research was carried out in order to optimize a DPF for this type of system use. The DPF developed was used in the European DPNR (Diesel Particulate-NOx Reduction System) subject vehicles by Toyota Motor Corporation, and actual trial runs in Europe were performed.
Technical Paper

Model-Based OBD Logic Utilizing Adsorption and Desorption Model of NH3 in SCR Catalyst

2016-04-05
2016-01-0960
Urea selective catalytic reduction (SCR) systems are a promising technology for helping to lower NOx emissions from diesel engines. These systems also require on-board diagnostic (OBD) systems to detect malfunctioning catalysts. Conventional OBD methodology for a SCR catalyst involves the measurement of NOx concentration downstream of the catalyst. However, considering future OBD regulations, erroneous diagnostics may occur due to variations in the actual environment. Therefore, to enhance OBD accuracy, a new methodology was examined that utilizes NH3 slip as a new diagnostic parameter in addition to NOx. NH3 slip increases as the NOx reduction performance degrades, because both phenomena are based on deterioration in the capability of the SCR catalyst to adsorb NH3. Furthermore, NH3 can be measured by existing NOx sensors because NH3 is oxidized to NO internally. To make use of NH3 slip, an estimation model was developed.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Technical Paper

Low Cooling Losses and Low Emission Analysis of Small Bore Diesel Engine Combustion

2015-09-01
2015-01-1824
Small bore diesel engines often adopt a two-valve cylinder head and a non-central injector layout to expand the port flow passage area. This non-central injector layout causes asymmetrical gas flow and fuel distribution, resulting in worse heat losseses and a less homogenous fuel-air mixture than an equivalent four-valve cylinder head layout with a central injector. To improve these problems Toyota applied a new concept which was characterized by tapered shape design on the upper portion of the piston and low compression ratio to achieve more homogeneous gas flow and fuel-air mixture. This paper describes the impact of new combustion concept and the mechanism of the improvement by 3D-CFD analysis and optical measurement.
X