Refine Your Search

Topic

Search Results

Technical Paper

Transient Non-linear FEA and TMF Life Estimates of Cast Exhaust Manifolds

2003-03-03
2003-01-0918
A transient nonlinear Finite Element Analysis (FEA) method has been developed to simulate the inelastic deformation and estimate the thermo-mechanical fatigue life of cast iron and cast steel exhaust manifolds under dynamometer test conditions. The FEA uses transient heat transfer analysis to simulate the thermal loads on the manifold, and includes the fasteners, gasket and portion of the cylinder head. The analysis incorporates appropriate elastic-plastic and creep material models. It is shown that the creep deformation is the most single critical component of inelastic deformation for cast iron manifold ratcheting, gasket sealing, and crack initiation. The predicted transient temperature field and manifold deformation of the FEA model compares exceptionally well with two experimental tests for a high silicon-molybdenum exhaust manifold.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

The Effect of Seal Stiffness on Door Chucking and Squeak and Rattle Performance

2004-03-08
2004-01-1562
Traditionally, door seals are designed to achieve good wind noise performance, water leakage and door closing effort in a vehicle design and development process. However, very little is known concerning the effect of door seal design on vehicle squeak and rattle performance. An earlier research work at Ford indicates a strong correlation between the diagonal distortions of body closure openings (in a low frequency range 0 - 50 Hz) and overall squeak and rattle performance. Another research at Ford reveals that relative accelerations between door latch and striker in a low frequency region (0 - 50 Hz) correlate well with door chucking performance. The findings of this research work enable engineers to assess squeak and rattle and door chucking performance using vehicle low frequency NVH CAE models at a very early design stage.
Technical Paper

Sound Transmission Analysis of Vehicle Door Sealing System

1999-05-17
1999-01-1804
A finite element-based acoustic-structure interaction analysis tool has been developed to determine the noise transmission loss characteristics of door seal systems. This tool has been applied to determine the effects of the individual parameters, such as seal material density, seal constitutive model, separation distance between seal layers, external cavity shape, and seal prestress field, on noise transmission characteristics. Our findings indicate that the external and internal cavity shapes, seal material density, and deformed seal geometry are the key factors affecting the noise transmission through seal system. Increasing seal material density decreases the resonance frequencies and increases the overall sound transmission loss. Changing the separation distance between seal layers changes the sound transmission characteristics without changing the compression load deflection behavior of the seal system.
Journal Article

Ride Comfort Analysis Considering Suspension Friction with Series Rigidity

2016-04-05
2016-01-1679
A dynamics model considering series rigidity was constructed to examine suspension friction, which has a major effect on ride comfort on paved roads. The friction characteristics of the bushings, ball joints, and shock absorbers are expressed with series elastic elements such as arm rigidity and the spring constant of the oil seals. It was confirmed that the calculated values for the overall spring constant and damping coefficient of the suspension virtually matched values measured in a 4-post shaker test. In addition, the results of analysis using this dynamics model confirmed that the degree of friction affects both the damping coefficient and the spring constant of the suspension, especially when the series rigidity is high. Also highly rigid friction has an adverse effect on sprung motion in frequency ranges above 15 Hz. After suspension enhancements were adopted based on these findings, 4-post shaker tests confirmed that sprung motion above 2 Hz improved..
Technical Paper

Radial O-Ring Insertion Force Optimization for Functionality and Assembly

2017-03-28
2017-01-0326
When sealing an application with a radial O-ring system design there is a balance that must be struck between O-ring function and the ease of assembly. If design parameters are not properly controlled or considered it is possible to design an O-ring seal that would require assembly insertion forces that exceed acceptable ergonomic practices from a manufacturing standpoint. If designs are released into production with these high insertion forces manufacturing operators will struggle to assemble parts, creating opportunity for potential operator injury due to repetitive strain or CTD. In this study several variables impacting O-ring system insertion forces were tested to quantify the effects. Results were analyzed to identify design controls that could be implemented from an early design phase to optimize both functionality and ease of assembly.
Technical Paper

Potential Application of Rubber-Graphene Compounds in the Automotive Parts

2024-01-08
2023-36-0028
Rubber is one of the most used materials currently selected to produce automotive parts, but, for specific applications, some improvement is required in its properties through the addition of some components to the rubber compound formulation. Because of that, mechanical, thermal, and chemical properties are enhanced in order to meet strict requirements of the vast range of application of the rubber compounds. In addition to improving material properties, the combination of different substances, also aims to improve processability and reduce the costs of the final product. Recently, the use of nanofillers has been very explored because of their distinctive properties and characteristics. Among the nanofillers under study, graphene is known for its high-barrier property, thermal and electrical conductivities, and good mechanical properties.
Technical Paper

Molded Elastomeric Press-in-Place Gasket Stability

2017-03-28
2017-01-0323
Press-in-place gasket stability is required to maintain consistent and predictive sealing compression in a sealing joint utilizing a housing groove and a mating component sealing surface. Without proper balance between height of the groove and height of the gasket, the sealing joint can be compromised. Hence, automotive engineers balance design variables with the desire to achieve long term sealability and gasket stability. The percentage of gasket out of groove was varied to study the interactions of this design control and the resultant deviation of gasket centerline to the groove centerline. Finally, an optimal percentage of gasket out of groove is recommended.
Technical Paper

Mechanical Drag Model for an Electric Machine

2017-03-28
2017-01-1230
Mechanical losses in electric machines can contribute significantly to overall system losses in an electric drive [1]. With a permanent magnet synchronous machine (PMSM), measuring mechanical losses is difficult without an un-magnetized rotor. Even with an un-magnetized rotor, physical testing can be time consuming and expensive. This paper presents a simple theoretical model of mechanical drag in an electric machine. The model was built using calculations for bearing, seal, and windage drag and was compared to experimental results from testing with un-magnetized motors. Based on this information, the model was modified to better represent the physical system. The goal of this work is to understand the contributors to mechanical drag, to be able to estimate mechanical losses without physical testing, and to be able to quickly evaluate design choices that could reduce mechanical losses.
Technical Paper

Local-Global Finite-Element Analysis for Cam Cover Noise Reduction

2003-05-05
2003-01-1725
Valve covers are a primary source of radiated engine noise. In this paper, we discuss an analytical approach that captures the complicated nonlinear response of the cam cover gaskets and grommets without the need for a prohibitively large finite-element model of the cam cover system. We utilize a detailed local analysis of the gasket and grommet components and abstract their isolation characteristics for later use in a global NVH (Noise-Vibration-Harshness) system analysis.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Technical Paper

Experimental Evaluation of Wind Noise Sources: A Case Study

1999-05-17
1999-01-1812
Several of the authors have recently developed procedures to efficiently evaluate experimentally the relative contributions of various wind noise paths and sources. These procedures are described and, as a case study, results are provided for the noise in the interior of a production automobile subjected to wind tunnel airflow. The present measurements and analysis indicate that for the tested vehicle significant contributions to interior noise are provided by underbody and wheel well flows, radiation from the roof and seal aspiration. A significant tone associated with vortex shedding from the radio antenna was also noted.
Technical Paper

Engineering Moveable Glass Window Seals of Automotive Door Using Upfront CAE

1998-09-29
982383
The traditional moveable glass window seal development process has relied heavily on physical prototypes for design verification. Due to frequent styling changes and an overall reduction in design time, physical prototypes for the glass window seals have proven to be inadequate. Utilization of computer aided engineering (CAE) tools is necessary in order to shorten lead time. CAE tools will help to decrease expensive prototyping, free up valuable manufacturing line time, and improve overall quality. A cross functional approach has been applied to expand the scope beyond traditional methods of moveable glass window seal design, such as wedged boarding, into new computerized modeling methods. The CAE was used to address major requirements of the glass window seals including glass velocity, glass stall force, sealing-ability, seal durability, seal assembly, seal appearance, and regulator motor current.
Technical Paper

Engine Friction Reduction for Improved Fuel Economy

1982-02-01
820085
Recent fuel cost increases have changed engine cost/benefit design guidelines and, therefore, renewed interest in engine friction reduction. At a typical part throttle engine operating condition, the mechanical friction (including oil pump & water pump) of a conventional four-cylinder engine consumes approximately 22% of the indicated power. A1 psi (6.9 kPa) MEP reduction in mechanical friction can result in an EPA, M-H fuel economy improvement of l%-2%, depending on the engine/vehicle configuration. This paper reviews various friction measurement methods and presents motoring friction data for several small engines (four and six cylinder). The friction of various components, including the valve train, pistons, rings and rods, seals and engine auxiliaries (alternator, water pump and oil pump) are also shown. Component design modifications for reducing friction are discussed, and projections and measurements of fuel economy gains for improved components are presented.
Technical Paper

Development of Sealing Material Used in the Body Welding Shop

2007-04-16
2007-01-0418
1 The principal characteristics required of sealing materials used in the body shop have focused on their adhesion to oily steel sheets and quick curing performance. Means for attaining these characteristics have been narrowed down to a basic resin system and a curing system. Various techniques have been studied to ensure proper anti-corrosion performance at the sealer application boundaries and thin application areas. They include the addition of anti-corrosion fillers, the provision of conductivity (through electro-deposition), and the application of a micro foam film over the application boundaries. Thus, prospects for attaining the same level of anti-corrosion performance as existing materials have been achieved.
Technical Paper

Development of Robot Control Method for Curved Seal Extrusion

1998-09-29
982366
The glass-integrated Curved Seal Extrusion (hereafter called “CSE”) is a new technology for manufacturing automobile-window mole. This technology is to extrude and stick mole directly on 3-D shaped window-glass by using the combination of a multi-axes robot and an extruding machine. This process could not be realized through the previous robot technology whose primary purpose was transporting goods, which did not necessitate real-time speed control. This time, we adopted a robot for the purpose of processing plasticity molding. For the purpose of improving formability, productivity, and appearance quality, we optimized the robot's movements and devised a method to vary the molding speed of the extruding machine. Furthermore, we have established a mass production technology by developing the optimum robot control method.
Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Technical Paper

Cylinder Head Gasket Fretting/Scrub Mechanism Investigation and Analysis Procedure Developments

2017-03-28
2017-01-1091
Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. There are three major failure modes for head gasket joint: fluid or gas leakage due to low sealing pressure, head gasket bead cracking due to high gap alternation and scrubbing/fretting due to pressure and temperature fluctuations causing lateral movement in the joint. During engine operation, the head gasket design should be robust enough to prevent all three failure modes and the resulting design must consider all three major failure modes to provide acceptable performance.
Technical Paper

Closures weatherstrips with variable cross sections

2018-09-03
2018-36-0152
Closures systems performance is a trade-off between NVH (Noise, Vibration and Harshness) and DCE (Door Closing Efforts) requirements. Dynamic sealing performance and sheet metal rigidity are the key contributors for a stable system. The seals actuate like a spring on the system. Higher seal load is good for NVH performance, adding more dumping to the system, but it will negatively affect DCE, as it will demand additional energy to close the system. Nominal seal load must be defined to achieve a balance between these attributes. This study is about dynamic sealing profiles with variable seal load, which provides tunable solutions to address the trade-off between NVH and DCE on the side doors or rear closures. Dynamic sealing weatherstrips are made of sponge EPDM extruded profiles with a specified load, defined by its CLD (Compression Load Deflection), which is given by the cross section design.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
X