Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Water Jacket Spacer for Improvement of Cylinder Bore Temperature Distribution

2005-04-11
2005-01-1156
For reduction of fuel consumption, a new device “Water Jacket Spacer” which improves temperature distribution of a cylinder block bore wall was developed. In the case of a conventional cylinder block, coolant flow concentrates at the bottom and middle region of the water jacket. While temperature of the upper bore wall is high (due to high-temperature combustion gas) the temperature of the lower bore wall is low, since its only function is to support the piston. When the developed spacer is inserted into a water jacket, the coolant flow concentrates at the upper part of the jacket. As a result, cooling ability to the upper bore wall was improved and temperature of lower bore wall was increased, thereby reducing fuel consumption.
Technical Paper

Waste Heat Recovery from Multiple Heat Sources in a HD Truck Diesel Engine Using a Rankine Cycle - A Theoretical Evaluation

2012-09-10
2012-01-1602
Few previous publications investigate the possibility of combining multiple waste heat sources in a combustion engine waste heat recovery system. A waste heat recovery system for a HD truck diesel engine is evaluated for utilizing multiple heat sources found in a conventional HD diesel engine. In this type of engine more than 50% of heat energy goes futile. The majority of the heat energy is lost through engine exhaust and cooling devices such as EGRC (Exhaust gas recirculation cooler), CAC (Charge air cooler) and engine cooling. In this paper, the potential of usable heat recuperation from these devices using thermodynamic analysis was studied, and also an effort is made to recuperate most of the available heat energy that would otherwise be lost. A well-known way of recuperating this heat energy is by employing a Rankine cycle circuit with these devices as heat sources (single loop or dual loop), and thus this study is focused on using a Rankine cycle for the heat recovery system.
Technical Paper

Vegetable Oil Hydrogenating Process for Automotive Fuel

2007-07-23
2007-01-2030
From the viewpoint of primary energy diversification and CO2 reduction, interests of using Biomass Fuel are rising. Some kinds of FAME (Fatty Acid Methyl Ester), which are obtained from oil fats like vegetable oil using transesterification reaction with methanol, are getting Palm Oilpular for bio-diesel recently. In this study, we have conducted many experiments of palm oil hydrogenations using our pilot plants, and checked the reactivity and the pattern of product yields. As a result, we figured out that the hydrocarbon oil equivalent to the conventional diesel fuel can be obtained from vegetable oils in good yield under mild hydrogenation conditions. Moreover, as a result of various evaluations for the hydrogenated palm oil (oxidation stability, lowtemperature flow property, LCA, etc.), we found that the hydrogenated palm oil by our technology has performances almost equivalent to conventional diesel fuel.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Universal Diesel Engine Simulator (UniDES): 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion

2008-04-14
2008-01-0843
We have developed a novel engine cycle simulation program (UniDES: universal diesel engine simulator) to reproduce the diesel combustion process over a wide range of engine operating parameters, such as the amount of injected fuel, the injection timing, and the EGR ratio. The approach described in this paper employs a zoning model, where the in-cylinder region is divided into up to five zones. We also applied a probability density function (PDF) concept to each zone to consider the effect of spatial non-homogeneities, such as local equivalence ratios and temperature, on the combustion characteristics. We linked this program to the commonly used commercial GT-Power® software (UniDES+GT). As a result, we were able to reproduce transient engine behavior very accurately.
Technical Paper

Universal Diesel Engine Simulator (UniDES) 2nd Report: Prediction of Engine Performance in Transient Driving Cycle Using One Dimensional Engine Model

2013-04-08
2013-01-0881
The aim of this research is to develop the diesel combustion simulation (UniDES: Universal Diesel Engine Simulator) that incorporates multiple-injection strategies and in-cylinder composition changes due to exhaust gas recirculation (EGR), and that is capable of high speed calculation. The model is based on a zero-dimensional (0D) cycle simulation, and represents a multiple-injection strategy using a multi-zone model and inhomogeneity using a probability density function (PDF) model. Therefore, the 0D cycle simulation also enables both high accuracy and high speed. This research considers application to actual development. To expand the applicability of the simulation, a model that accurately estimates nozzle sac pressure with various injection quantities and common rail pressures, a model that accounts for the effects of adjacent spray interaction, and a model that considers the NOx reduction phenomenon under high load conditions were added.
Technical Paper

Unburned Hydro Carbon (HC) Estimation Using a Self-Tuned Heat Release Method

2010-10-25
2010-01-2128
An estimation model which uses the gross heat release data and the fuel energy to estimate the total amount of emissions and unburned Hydro Carbon (HC) is developed. Gross heat release data is calculated from a self-tuned heat release method which uses in-cylinder pressure data for computing the energy released during combustion. The method takes all heat and mass losses into account. The method estimates the polytropic exponent and pressure offset during compression and expansion using a nonlinear least square method. Linear interpolation of polytropic exponent and pressure offset is then performed during combustion to calculate the gross heat release during combustion. Moreover the relations between the emissions specifically HC and Carbon Monoxide (CO) are investigated. The model was validated with experimental data and promising results were achieved.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Transition from HCCI to PPC: the Sensitivity of Combustion Phasing to the Intake Temperature and the Injection Timing with and without EGR

2016-04-05
2016-01-0767
An experiment was conducted to investigate the effect of charge stratification on the combustion phasing in a single cylinder, heavy duty (HD) compression ignition (CI) engine. To do this the start of injection (SOI) was changed from -180° after top dead centre (ATDC) to near top dead centre (TDC) during which CA50 (the crank angle at which 50% of the fuel energy is released) was kept constant by changing the intake temperature. At each SOI, the response of CA50 to a slight increase or decrease of either intake temperature or SOI were also investigated. Afterwards, the experiment was repeated with a different intake oxygen concentration. The results show that, for the whole SOI period, the required intake temperature to keep constant CA50 has a “spoon” shape with the handle on the -180° side.
Technical Paper

Transition from HCCI to PPC Combustion by Means of Start of Injection

2015-09-01
2015-01-1790
Partially premixed combustion (PPC) is a promising way to achieve high efficiency and low engine-out emissions simultaneously in a heavy-duty engine. Compared to Homogeneous Charge Compression Ignition (HCCI), it can be controlled by injection events and much lower HC and CO emissions can be achieved. This work focuses on the transition from HCCI to PPC and combustion and emissions characteristics during the process are investigated. Injection strategies, EGR and boost pressure were the main parameters used to present the corresponding effect during the transition.
Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2011-11-04
In the pursuit of a sustainable transportation systems, Toyota is considering a comprehensive approach pursuing multiple advanced technologies to address three primary issues: GHG, Petroleum Use, and Air Quality. Vehicles must be ready for and affordable to the mass market to provide the customer choices to meet their transportation needs whether it is EV's, Hybrids, Plug-In Hybrids or Fuel Cell Hydrogen Hybrids. Our studies have shown that EVs have the potential to provide significant improvements in energy utilization especially combined with other advanced technologies. Toyota believes that a combination of these technolgies will provide complementary solution that enables a sustainable transportation system. Presenter Takehito Yokoo, Toyota Motor Corporation
Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Technical Paper

Three-Dimension Deposited Soot Distribution Measurement in Silicon Carbide Diesel Particulate Filters by Dynamic Neutron Radiography

2011-04-12
2011-01-0599
Exhaust emissions are well known to have adverse impacts on human health. Studies have demonstrated that there is an association between ambient particulate matter (PM) levels and various harmful cardiopulmonary conditions. Soot exhaust from diesel engines can be a significant contributor to airborne pollutants. A key component in PM level control for a diesel engine is a diesel particulate filter (DPF). This device traps soot while allowing other exhaust gases to pass unhindered. However, the performance of diesel particulate filters can change with increasing soot loadings and thus may require regeneration or replacement. Improved understanding of diesel particulate filters is dependent upon the knowledge of the actual soot loading and the soot distribution within the DPF. Neutron radiography (NR) has been identified as an effective means of non-destructively identifying hydrogen or carbon adsorbed in PM.
Technical Paper

Thermal Reduction of NOx in a Double Compression Expansion Engine by Injection of AAS 25 and AUS 32 in the Exhaust Gases

2019-01-15
2019-01-0045
The double compression expansion engine (DCEE) is a promising concept for high engine efficiency while fulfilling the most stringent European and US emission legislation. The complete thermodynamic cycle of the engine is split among several cylinders. Combustion of fuel occurs in the combustion cylinder and in the expansion cylinder the exhaust gases are over expanded to obtain high efficiency. A high-pressure tank is installed between these two cylinders for after-treatment purposes. One proposal is to utilize thermal reduction of nitrogen oxides (NOx) in the high-pressure tank as exhaust temperatures can be sufficiently high (above 700 °C) for the selective non-catalytic reduction (SNCR) reactions to occur. The exhaust gas residence time at these elevated exhaust temperatures is also long enough for the chemical reactions, as the volume of the high-pressure tank is substantially larger than the volume of the combustion cylinders.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
X