Refine Your Search

Topic

Author

Search Results

Technical Paper

Verification of High Frequency SiC On-Board Vehicle Battery Charger for PHV

2016-04-05
2016-01-1210
This paper presents a new application of a vehicle on-board battery charger utilizing high frequency Silicon Carbide (SiC) power devices. SiC is one of the most promising alternatives to Silicon (Si) for power semiconductor devices due to its superior material characteristics such as lower on-state resistance, higher junction temperature, and higher switching frequency. An on-board charger prototype is developed demonstrating these advantages and a peak system efficiency of 95% is measured while operating with a switching frequency of 250 kHz. A maximum output power of 6.06 kW results in a gravimetric power density of 3.8 W/kg and a volumetric power density of 5.0 kW/L, which are about 10 times the densities compared with the current Prius Plug-In Si charger. SiC technology is indispensable to eco-friendly PHV/EV development.
Technical Paper

Trends of Future Powertrain Development and the Evolution of Powertrain Control Systems

2004-10-18
2004-21-0063
High fuel efficiency and low emission technologies, such as Direct Injection (DI) gasoline and diesel engines and hybrid powertrains, have been developed to resolve environmental and energy resource issues. The hybrid powertrain system has achieved superior power performance as well as higher system efficiency and is expected to be a core powertrain technology because it is compatible with various power sources including fuel cells. It becomes important to control complicated hybrid systems that consist of not only a powertrain but also vehicle systems such as regenerative braking. Model-based control and calibration enables both control strategy optimization and control system development efficiency improvement.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 2: Comparative Analysis of Economic, Environmental, and Usability Benefits

2016-04-05
2016-01-1286
Introducing effective technologies to reduce carbon emissions in the transport sector is a critical issue for automotive manufacturers to contribute to sustainable development. Unlike the plug-in electric vehicles (PEVs), whose effectiveness is dependent on the carbon intensity of grid electricity, the solar hybrid vehicle (SHV) can be an alternative electric vehicle because of its off-grid, zero-emission electric technology. Its usability is also advantageous because it does not require manual charging by the users. This study aims at evaluating the economic, environmental, and usability benefits of SHV by comparing it with other types of vehicles including PEVs. By setting cost and energy efficiency on the basis of the assumed technology level in 2030, annual cost and annual CO2 emissions of each vehicle are calculated using the daily mileage pattern obtained from a user survey of 5,000 people in Japan and the daily radiation data for each corresponding user.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions

2016-04-05
2016-01-1287
In recent years, automakers have been developing various types of environmentally friendly vehicles such as hybrid (HV), plug-in hybrid (PHV), electric (EV), and fuel cell (FCV) vehicles to help reduce greenhouse gas (GHG) emissions. However, there are few commercial solar vehicles on the market. One of the reasons why automakers have not focused attention on this area is because the benefits of installing solar modules on vehicles under real conditions are unclear. There are two difficulties in measuring the benefits of installing solar modules on vehicles: (1) vehicles travel under various conditions of sunlight exposure and (2) sunlight exposure conditions differ in each region. To address these problems, an analysis was performed based on an internet survey of 5,000 people and publically available meteorological data from 48 observation stations in Japan.
Technical Paper

Synchrotron X-Ray Visualization and Simulation for Operating Fuel Cell Diffusion Layers

2017-03-28
2017-01-1188
The key challenge in designing a high power density fuel cell is to reduce oxygen transport loss due to liquid water. However, liquid water transport from catalyst layers to channels under operating conditions is not completely understood. Toyota developed a high resolution space and time liquid water visualization technique using synchrotron x-ray (Spring-8) radiography. In addition, a simulation method was created based on computational fluid dynamics (CFD) to identify the cell performance relationship to water distribution. The relationship among gas diffusion layer (GDL) parameters, water distribution, and fuel cell performance was clarified by combining the techniques Toyota developed.
Technical Paper

Study on the Potential Benefits of Plug-in Hybrid Systems

2008-04-14
2008-01-0456
There is ever increasing interest in the issues of fossil fuel depletion, global warming, due to increased atmospheric CO2, and air pollution, all of which are due in some extent to transportation, including automobiles. Hybrid Vehicles (HVs), whose performance and usage are equivalent to existing conventional vehicles, attract lots of attention and have started to come into wider use. Meanwhile, EVs have been considered by many as the best solution for the issues mentioned above. But the technical difficulty of battery energy density is an obstruction to successful implementation. Currently the Plug-in HV (PHEV), which combines the advantages of HV and EV, is being considered as one promising solution. PHEVs can be categorized into two types, according to operating modes. The first uses battery stored energy initially, only stating the internal combustion engine when the battery is depleted. This we call the All Electric Range (AER) system.
Journal Article

Study of Oxide Supports for PEFC Catalyst

2017-03-28
2017-01-1179
Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
Journal Article

Study of Alternative Oxygen Reduction Electrocatalyst for Pt Based on Transition Metal Chalcogenides

2008-04-14
2008-01-1265
The development of an alternative oxygen reduction electrocatalyst to platinum based electrocatalysts is critical for practical use of the polymer electrolyte membrane fuel cell (PEMFC). Transition metal sulfide chalcogenides have recently been reported as a possible candidate for Pt replacement. Our work focused on chalcogenides composed of ruthenium, molybdenum, and sulfur (RuMoS). We elucidate the factors affecting electrocatalytic activity of carbon supported RuXMoY SZ catalyst. This was demonstrated through a correlation of oxygen reduction reaction (ORR) activity of the catalysts with structural changes resulting from designed changes in sulfur composition in the catalysts.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Real-time Long Horizon Model Predictive Control of a Plug-in Hybrid Vehicle Power-Split Utilizing Trip Preview

2019-12-19
2019-01-2341
Given a forecast of speed and load demands during a trip, a hybrid powertrain power-split Trajectory Optimization Problem (TOP) can be solved to optimize fuel consumption. This can be done on desktop to set performance benchmarks; however, it has been believed that the TOP could not be solved in real-time and is not a realizable controller. As such, several approximations of the TOP have been made in the interest of obtaining a real-time near-optimal controller, for example, Equivalent Consumption Minimization Strategies (ECMS) and their adaptive counterparts. These strategies decide on the power-split by, at each sampled time instant, minimizing a Horizon-0 (without predicting forward in time) composite function of fuel consumption and equivalent battery energy. The fuel economy that results from these strategies is highly sensitive to the calibration of the associated equivalence factor, and furthermore, must be chosen differently for different drive cycles.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Technical Paper

Novel Power Conversion System for Cost Reduction in Vehicles with 42V/14V Power Supply

2003-03-03
2003-01-0307
In recent years, attention is being given to 42V power supply technology for solving the problem of increased power demand in vehicles. Since 2001, Toyota Motor Corporation has been marketing a mild hybrid system (THS-M) in order to further improve fuel economy and reduce emissions; this system requires both 42V and 14V power sources. The THS-M system consists of a 42V motor generator (M/G) connected to the engine crankshaft with a belt; an inverter; a 36V battery; a DC/DC converter for stepping down the 42V power supply to a conventional 12V battery; and high-power related electrical components. These components require additional costs, which must be reduced in order to increase the sales volume of THS-M vehicles. We have devised a method to eliminate the conventional DC/DC converter from the THS-M, and as a result we have developed a new, revolutionary power conversion system (multi-function inverter).
Technical Paper

Newly Developed Toyota Plug-in Hybrid System and its Vehicle Performance under Real Life Operation

2011-06-09
2011-37-0033
Toyota has been introducing several hybrid vehicles (HV) since 1997 as a countermeasure to the concerns raised by automobile, like CO2 reduction, energy security, and pollutant emission reduction in urban areas. Plug in hybrid Vehicle (PHV) uses electric energy from grid rather than fuel for most short trips and therefore presents a next step forward towards an even more effective solution for these concerns. For longer trips, the PHV works as a conventional hybrid vehicle, providing all the benefits of Toyota full hybrid technology, such as low fuel consumption, user-friendliness and long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space.
Technical Paper

Inverse Analysis of Road Contact Force and Contact Location Using Machine Learning with Measured Strain Data

2024-04-09
2024-01-2267
To adapt to Battery Electric Vehicle (BEV) integration, the significance of protective designs for battery packs against ground impact caused by road debris is very high, and there is also a keen interest in the feasibility assessment technique using Computer-Aided Engineering (CAE) tools for prototype-free evaluations. However, the challenge lies in obtaining real-world empirical data to verify the accuracy of the predictive CAE model. Collecting real-world data using actual battery pack can be time-consuming, costly, and accurately ascertaining the precise direction, magnitude, and location of the force applied from the road to the battery pack poses a challenging task. Therefore, in this study, we developed a methodology using machine learning, specifically Gaussian process regression (GPR), to perform inverse analysis of the direction, magnitude, and location of vehicle-road contact forces during rough road conditions.
Journal Article

In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalysts

2016-04-05
2016-01-1192
Electrode catalyst (platinum) degradation represents a major challenge to the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) in Fuel Cell Vehicles (FCVs). While various mechanisms have been proposed and investigated previously, there is still a need to develop in situ imaging techniques that can characterize and provide direct evidence to confirm the degradation process. In the present study, we report an in situ transmission electron microscopy (TEM) method that enables real time, high-resolution observation of carbon-supported platinum nanoparticles in liquid electrolyte under working conditions. By improving the design of the Micro Electro Mechanical Systems (MEMS) sample holder, the migration and aggregation of neighboring platinum nanoparticles could be visualized consistently and correlated to applied electrode potentials during aging process (i.e., cyclic voltammetry cycles).
Technical Paper

Hybrid Vehicles Lessons Learned and Future Prospects

2006-10-16
2006-21-0027
There exist many environmental and earth resource problems to be solved for the 21st century. Hybridization of both internal combustion powertrains and fuel cell powertrains holds great promise for next generation vehicles. This paper describes the lessons learned during design, development, production and marketing of nearly 700,000 hybrid vehicles to date. We review the evolution of major components with a focus on reducing cost, mass and volume while increasing power and efficiency. We also describe the future prospects for hybrid vehicles.
Technical Paper

High-pressure Metal Hydride Tank for Fuel Cell Vehicles

2007-07-23
2007-01-2011
High-pressure metal hydride (MH) tank has been designed based on a 35 MPa cylinder vessel. The heat exchanger module is integrated into the tank. Its advantage over high-pressure cylinder vessels is its large hydrogen storage capacity, for example 9.5 kg with a tank volume of 180 L by Ti25Cr50V20Mo5 alloy. Cruising range is about 900 km, over 3 times longer than that of a 35 MPa cylinder vessel system with the same volume. The hydrogen-charging rate of this system is equal to the 35 MPa cylinders without any external cooling facility. And release of hydrogen at 243 K is enabled due to the use of hydrogen-absorbing alloy with high-dissociation pressure, for example Ti35Cr34Mn31 alloy.
Technical Paper

Enhancing PtCo Electrode Catalyst Performance for Fuel Cell Vehicle Application

2016-04-05
2016-01-1187
While carbon supported PtCo alloy nanoparticles emerged recently as the new standard catalyst for oxygen reduction reaction in polymer membrane electrolyte fuel cells, further improvement of catalyst performance is still of great importance to its application in fuel cell vehicles. Herein, we report two examples of such efforts, related to the improvements of catalyst preparation and carbon support design, respectively. First, by lowering acid treatment voltage, the effectiveness for the removal of unalloyed Co was enhanced significantly, leading to less Co dissolution during cell operation and about 40% higher catalyst mass activity. It has been also found that the use of nonporous carbon support material promoted mass transfer and resulted in substantial drop of overpotential at high current and low humidity. This result may suggest an effective strategy towards the development of fuel cell systems that operate without additional humidification.
Journal Article

Efficiency Improvement of Boost Converter for Fuel Cell Bus by Silicon Carbide Diodes

2016-04-05
2016-01-1234
The adoption of silicon carbide (SiC) power semiconductors is regarded as a promising means of improving the fuel efficiency of all types of electrically powered vehicles, including plug-in, electric, fuel cell, and hybrid vehicles (PHVs, EVs, FCVs, and HVs). For this reason, adoption in a wide variety of vehicles is currently being studied, including in the fuel cell (FC) boost converter of an FC bus. The FC boost converter controls the output voltage of the FC up to 650 V. In this research, SiC Schottky barrier diodes (SiC-SBDs) were adopted in the upper arm of an FC boost converter. Since the forward voltage (Vf) of SiC-SBDs is smaller than conventional Si-PiN diodes (Si-PiNDs), the conduction loss of SiC-SBDs is correspondingly smaller. Recovery loss can also be reduced by at least 90% compared to Si-PiNDs since the recovery current of SiC-SBDs is substantially smaller.
Technical Paper

Development of the New 2.0L Hybrid System for Prius

2023-04-11
2023-01-0474
It is necessary for us to reduce CO2 emissions in order to hold down global warming which is advancing year by year. Toyota Motor Corporation believes that not only the introduction of BEVs but also the sale of the hybrid vehicles must spread in order to achieve the necessary CO2 reduction. Therefore, we planned to improve the attractiveness of future hybrid vehicles. Prius has always made full use of hybrid technologies and leading to significant CO2 reduction. Toyota Motor Corporation has developed a 2.0L hybrid system for the new Prius. We built the system which could achieve a comfortable drive along following the customer’s intention while improving the fuel economy more than a conventional system. The engine improves on both output and thermal efficiency. The transaxle decreases mechanical loss by downsizing the differential, and adoption of low viscosity oil.
X