Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Verification of High Frequency SiC On-Board Vehicle Battery Charger for PHV

2016-04-05
2016-01-1210
This paper presents a new application of a vehicle on-board battery charger utilizing high frequency Silicon Carbide (SiC) power devices. SiC is one of the most promising alternatives to Silicon (Si) for power semiconductor devices due to its superior material characteristics such as lower on-state resistance, higher junction temperature, and higher switching frequency. An on-board charger prototype is developed demonstrating these advantages and a peak system efficiency of 95% is measured while operating with a switching frequency of 250 kHz. A maximum output power of 6.06 kW results in a gravimetric power density of 3.8 W/kg and a volumetric power density of 5.0 kW/L, which are about 10 times the densities compared with the current Prius Plug-In Si charger. SiC technology is indispensable to eco-friendly PHV/EV development.
Technical Paper

Vehicle Surge Reduction Technology during Towing in Parallel HEV Pickup Truck

2022-03-29
2022-01-0613
This paper proposes a technology to reduce vehicle surge during towing that utilizes motors and shifting to help ensure comfort in a parallel HEV pickup truck. Hybridization is one way to reduce fuel consumption and help realize carbon neutrality. Parallel HEVs have advantages in the towing, hauling, and high-load operations often carried out by pickup trucks, compared to other HEV systems. Since the engine, motor, torque converter, and transmission are connected in series in a parallel HEV, vehicle surge may occur when the lockup clutch is engaged to enhance fuel efficiency, similar to conventional powertrains. Vehicle surge is a low-frequency vibration phenomenon. In general, the source is torque fluctuation caused by the engine and tires, with amplification provided by first-order torsional driveline resonance, power plant resonance, suspension resonance, and cabin resonance. This vibration is amplified more during towing.
Technical Paper

Variation in Corrosion Resistance of Trivalent Chromate Coating Depending on Type of Zinc Plating Bath

2006-04-03
2006-01-1671
Trivalent chromate coating is replacing the conventional hexavalent chromate coating applied on zinc plating. Zinc plating uses one of three types of plating baths (zincate, cyanide and chloride) according to the characteristics required of subject parts. It has been recognized that trivalent chromate coating provides different corrosion resistance depending on the type of zinc plating bath used. Zinc plating with chromate coating were analyzed to clarify the cause of the corrosion resistance variation with the type of zinc plating bath. It has been revealed that the chromate coating thickness and the condition of top SiO2 layer vary with the type of zinc plating bath, resulting in corrosion resistance variation.
Journal Article

Unsteady Aerodynamic Response of a Vehicle by Natural Wind Generator of a Full-Scale Wind Tunnel

2017-03-28
2017-01-1549
In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
Technical Paper

Toyota’s New Hybrid Unit “L4A0”

2022-03-29
2022-01-0656
Toyota developed a new hybrid unit “L4A0” for the new Tundra, which creates both good drivability and environmental performance. To ensure off-road, towing performance and typical truck driving characteristics, the unit is based on a transmission with a torque converter and a multi-plate lock up clutch, with a motor-generator and K0 clutch installed between the engine and transmission. The motor-generator and K0 clutch are built into a module, making it possible to create new hybrid units by combining the module with various transmissions. The unit features many different motor controls. For example, in the case of step-in acceleration input, in order to achieve the desired output torque, typically a kick-down shift is necessary [1]; however, by utilizing “L4A0” both high response and high power output is achieved even without a kick-down shift. This is accomplished by assisting the engine with the motor-generator even when the engine torque is delayed at low engine speeds.
Technical Paper

Toyota's New Shift-by-Wire System for Hybrid Vehicles

2004-03-08
2004-01-1112
In today's motorized society, various automotive technologies continue to evolve every day. Amid this trend, a new concept with respect to automatic transaxle gear-shifting has been developed. In order to materialize a new concept for shifting operation with a universal design in mind, a system has been developed: a shift-by-wire system developed specifically for hybrid vehicles. The greatest advantage of this new system is the lack of constraints associated with the conventional mechanical linkage to the transaxle. This allows freedom of design for the gear selection module. A revolutionary improvement in the ease of shifting has been realized by taking full advantage of this design freedom. In addition, this system contributes to an innovative design. For improved ease of operation, the operation force of the shift lever of this system has been dramatically reduced. For parking, the driver can engage the parking mechanism of the transaxle at the touch of a switch.
Technical Paper

Toyota “ECT-i” a New Automatic Transmission with Intelligent Electronic Control System

1990-02-01
900550
TOYOTA has developed a new automatic transmission, called the A341E. This transmission employs a unique engine and transmission integrated intelligent control system named “ECT-i”, and a high performance “Super Flow” Torque Converter. This control system is capable of total control of engine torque and clutch hydraulic pressure during shifting, which has resulted in very smooth shift without changes over the life of the transmission. The “Super Flow” Torque Converter has a modified geometry optimized by the analysis of internal flow by means of computer simulations, attaining the highest efficiecy in the world. With the use of such systems, this new automatic transmission has improved total performance of the vehicle.
Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Technical Paper

The application of the damage & fracture material model to crashworthiness evaluations for Aluminum cars.

2003-10-27
2003-01-2776
In an evaluation of crashworthiness for the cars made of aluminum alloys, the evaluation considering fracture phenomenon comes to be needed because conventional aluminum alloys have low fracture strain (10-20%). In case of the development of a B-Pillar made by die cast, if crack occurrence, furthermore, separation of a part can be estimated by using CAE in crashworthiness evaluations, we can reduce the number of prototype makings and the cost of development using expensive dies. Therefore, we performed crashworthiness evaluations by CAE using some sort of a damage & fracture material model. It is known as “Orthotropic damage & fracture model”.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

The New RWD 6 Speed Automatic Transmission for SUV and Truck

2016-04-05
2016-01-1097
Aisin AW (AW) and Toyota Motor Corporation (TMC) have developed a new RWD 6 speed automatic transmission, AWR6B45(AC60), suitable for SUV’s and LDT’s in the worldwide market, not only for North America but also for other countries including emerging nations. This 6 speed automatic transmission has achieved low cost, equivalent to AW and TMCs’ current 5 speed automatic transmission, while realizing improvement in both fuel economy and driving performance against current in-house 5-speed automatic transmissions, in addition to satisfying both toughness against various usage and light weight/compactness. They are accomplished by using a compact gear train structure, the latest efficiency improvement technologies, and a high-response, compact hydraulic control system. In addition, the compactness of this 6 speed automatic transmission enables it to replace current 4 speed and 5 speed automatic transmissions for various engine applications.
Technical Paper

The Establishment of Laboratory Test Method for Gelation of Engine Oil Containing Magnesium Detergents

2001-05-07
2001-01-1986
It has been reported that engine oils containing magnesium detergents gel under special conditions. The authors have previously reported on the mechanism by which magnesium detergents form needle crystals, which is the main cause of the gelation[1]. For this article, the authors conducted tests in actual vehicles using several types of engine oils containing magnesium detergents, including oils for which gelation problems have been reported in the market. The gelation was reproduced, and the test oils were ranked by their propensity to gel. In addition, a laboratory test method was used in which water and CO2 were mixed into engine oil under controlled conditions, then left stored in a bottle for twenty days, after which the kinematic viscosity and the quantity of insolubles of the mixture were measured. The study demonstrated the correlation between the laboratory test method and the actual vehicle tests.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Journal Article

Study of the Prediction Method for Maximum Traction Coefficient

2013-04-08
2013-01-0366
This report proposes a rheological model and a thermal analysis model for oil films, which transmit power through a variator, as a prediction method for the maximum traction coefficient, and then describes the application and verification of this method. The rheological model expresses the conditions inside the contact ellipse using a combination of viscosity and plasticity. The thermal analysis model for oil films was confirmed by comparison of previously obtained temperatures directly measured from the traction contact area of the four-roller experimental apparatus [1]. The measurement used a thin-film temperature sensor and the consistency between the calculated and measured values was verified in the estimation model by reflecting the precise thermal properties of the thin film. Most values were consistent with the calculated values for the middle plane local shear heating model inside the oil film.
Technical Paper

Study of Plastic Plating Using Highly Concentrated Ozonized Water Pretreatment

2005-04-11
2005-01-0618
In order to achieve good adhesive properties, typical decorative plastic plating technology uses a chromic acid process that creates an anchor effect. Due to environmental concerns with hexavalent chromium, there is a need to find alternative processes. Pretreatment using highly concentrated ozonized water was investigated as a novel approach to achieving this goal. In the conventional chromic acid process, strong adhesion between plating membranes is achieved by roughing the ABS (acrylonitrile-butadiene-styrene) resin surface by approximately 1 um. On the other hand, the highly concentrated ozonized water process achieves good adhesion with a smooth resin by changing the resin from ABS to ASA (acrylate-styrene-acrylonitrile). It was discovered that the difference in this strength of adhesion was the difference in resin surface strength (existence of deterioration or otherwise).
Journal Article

Study of Alternative Oxygen Reduction Electrocatalyst for Pt Based on Transition Metal Chalcogenides

2008-04-14
2008-01-1265
The development of an alternative oxygen reduction electrocatalyst to platinum based electrocatalysts is critical for practical use of the polymer electrolyte membrane fuel cell (PEMFC). Transition metal sulfide chalcogenides have recently been reported as a possible candidate for Pt replacement. Our work focused on chalcogenides composed of ruthenium, molybdenum, and sulfur (RuMoS). We elucidate the factors affecting electrocatalytic activity of carbon supported RuXMoY SZ catalyst. This was demonstrated through a correlation of oxygen reduction reaction (ORR) activity of the catalysts with structural changes resulting from designed changes in sulfur composition in the catalysts.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Journal Article

Shift-by-Wire System for Lexus RWD Vehicles

2017-03-28
2017-01-1094
Shift selection devices are desired to be flexible for design and layout, in order to realize the next generation of cockpits for Lexus vehicles. In addition, refined shift operation feelings are also required to be suitable for Lexus vehicles. To meet these demands, the Lexus LC500 has been equipped with a shift-by-wire system, which replaces the mechanical linkage between the shift selector and transmission with electrical signals and an actuator. This shift-by-wire system will be installed in a wide variety of Lexus powertrain lineup, including conventional gas vehicles and hybrid vehicles. Therefore, the next generation shift-by-wire system for Lexus has been developed with high reliability and applicability. This technology will be essential when autonomous driving and autonomous parking systems are realized in the near future.
Technical Paper

Research of Fuel Components to Enhance Engine Thermal Efficiency Part I: Concepts for Fuel Molecule Candidate

2019-12-19
2019-01-2255
As part of efforts to address climate change and improve energy security, researchers have improved the thermal efficiency of engines by expanding the lean combustion limit. To further expand the lean combustion limit, the authors focused not only on engine technology but the chemical reactivity of various fuel molecules. Furan and anisole were among the fuel molecules selected, based on the idea that promising candidates should enhance the flame propagation speed and have good knocking resistance. Engine testing showed that the lean limit can be expanded by using fuels with the right molecular structures, resulting in higher thermal efficiency.
X