Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Mechanical Fatigue Simulation of Cast iron Cylinder Heads

2005-04-11
2005-01-0796
The requirement for increased power and reduced emission and fuel consumption levels for diesel engines has created very stringent demands on the cylinder head design. In current engine development programs it is often observed that the limiting design factor is given by the thermal mechanical fatigue strength of the cylinder head. Design iterations resulting from durability testing are often necessary due to the lack of adequate simulation techniques for prediction thermal mechanical fatigue (TMF) failure. A complete lifetime simulation process is presented in this paper with emphasis on a newly developed material model for describing the constitutive behavior of cast iron (i.e. gray cast iron and compacted graphite iron) under thermal cycling. The material model formulation is based on a continuum-damage-mechanics (CDM) approach in order to account for the tension / compression anomaly of cast iron.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 2 - Influence of Engine Oil Evaporation Characteristics on Oil Consumption of Internal Combustion Engines

2022-03-29
2022-01-0524
The reduction of CO2 emissions is one of the most important challenges for the automotive industry to contribute to address global warming. Reducing friction of internal combustion engines (ICEs) is one effective countermeasure to realize this objective. The improvement of engine oil can contribute to reduce fuel consumption by reducing friction between engine parts. Electrification of ICE powertrains increases the overall efficiency of powertrains and reduces the average engine oil temperature during vehicle operation, due to intermittent engine operation. An effective way of reducing engine friction is to lower the viscosity of the engine oil in the low to medium temperature range. This can be accomplished while maintaining viscosity at high temperatures by reducing the base oil viscosity and increasing the viscosity modifier (VM) content to raise the viscosity index (so-called “flat viscosity” concept).
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Technical Paper

New Frictional Testing Method for Stamping Formability - Development of Dr. STAMP (Direct & Rapid, Surface Tribology Analyzing Method for Press) Method -

2003-10-27
2003-01-2812
Galvannealed steel sheet (GA) is very extensively used for vehicle panels. However ζ-phase (FeZn13) in GA coat causes poor stamping formability. Previously, there were no easy methods to evaluate the influence of ζ-phase on the frictional characteristics other than the X-ray diffraction method. This study will discuss the development of a new testing method: Dr. STAMP Method that is both efficient and convenient with pin-on-disc tester.
Technical Paper

New Conceptual Lead Free Overlays Consisted of Solid Lubricant for Internal Combustion Engine Bearings

2003-03-03
2003-01-0244
Two types of new conceptual lead free overlays are developed for automotive internal combustion(IC) engine bearings. The overlays are consisted of molybdenum disulfide(MoS2) and polyamideimide(PAI) resin for binding. One of the overlays is suitable for diesel engines with higher unit load and the other overlay is suitable for gasoline engines with higher sliding velocity. Both overlays indicate good corrosion resistance and wear resistance comparing with conventional lead base overlay. Moreover, higher fatigue resistance is obtained in combination with high performance lead free bearing alloy. These new bearings have the potential to become alternative materials to conventional copper lead bearings with lead base overlay.
Technical Paper

Method of Improving Side Impact Protection Performance by Induction Hardening of Body Reinforcement Compatibility Between Safety and Weight Reduction in Body Engineering

1998-02-23
980550
A technique for induction-hardening local portions of vehicle body reinforcements press-formed of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement. Owing to this method, the weight of body reinforcements can be decreased. New induction-hardening systems have also been developed for the present technique. One is an apparatus which allows induction-hardening a part with a three-dimensionally curved surface. Another is a straightening quench technique used to retain the same dimensional accuracy as the original press-formed part.
Technical Paper

Method for Root Bending Fatigue Life Prediction in Differential Gears and Validation with Hardware Tests

2024-04-09
2024-01-2249
An advanced multi-layer material model has been developed to simulate the complex behavior in case-carburized gears where hardness dependent strength and elastic-plastic behavior is characterized. Also, an advanced fatigue model has been calibrated to material fatigue tests over a wide range of conditions and implemented in FEMFAT software for root bending fatigue life prediction in differential gears. An FEA model of a differential is setup to simulate the rolling contact and transient stresses occurring within the differential gears. Gear root bending fatigue life is predicted using the calculated stresses and the FEMFAT fatigue model. A specialized rig test is set up and used to measure the fatigue life of the differential over a range of load conditions. Root bending fatigue life predictions are shown to correlate very well with the measured fatigue life in the rig test.
Technical Paper

Measuring Brake Wear Particles with a Real-Driving Emissions Sampling System on a Brake Dynamometer

2022-09-19
2022-01-1180
Brake wear particles are recognized as one of the dominant sources of road transport particulate matter emissions and are linked to adverse health effects and environmental impact. The UNECE mandated the Particle Measurement Program to address this issue, by developing a harmonized sampling and measurement methodology for the investigation of brake wear particles on a brake dynamometer (dyno). However, although the brake dyno approach with tightly controlled test conditions offers good reproducibility, a multitude of changing vehicle and surrounding conditions make real-driving emissions measurement a highly relevant task. Here we show two different prototypes for on-road particle measurement with minimal impact of the measurement setup on the emission behavior, tested on a brake dyno.
Journal Article

Low-viscosity Gear Oil Technology to Improve Wear at Tapered Roller Bearings in Differential Gear Unit

2016-10-17
2016-01-2204
Torque loss reduction at differential gear unit is important to improve the fuel economy of automobiles. One effective way is to decrease the viscosity of lubricants as it results in less churning loss. However, this option creates a higher potential for thin oil films, which could damage the mechanical parts. At tapered roller bearings, in particular, wear at the large end face of rollers and its counterpart, known as bearing bottom wear is one of major failure modes. To understand the wear mechanism, wear at the rolling contact surface of rollers and its counterpart, known as bearing side wear, was also observed to confirm the wear impact on the tapered roller bearings. Because gear oils are also required to avoid seizure under extreme pressure, the combination of a phosphorus anti-wear agent and a sulfurous extreme pressure agent are formulated.
Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Technical Paper

High Toughness Microalloyed Steels for Vital Automotive Parts

1989-02-01
890511
We developed new microalloyed steels, containing about 0.05% sulfur, which have excellent as hot-forged toughness even when forged at the temperatures of about 1300°C(2375°F). We also estimated the various properties of the new microalloy steel in the as hot-forged condition, comparing them to quench and tempered SAE1055 steel used in the front axle of a small truck. The results showed the new steel has improved yield strength, fatigue strength, absorbed impact energy and machinability over the SAE1055 steel.
Technical Paper

Hardfaced Valve and P/M Valve Seat System for CNG and LPG Fuel Engines

2005-04-11
2005-01-0718
When adapted for use in automotive engines, CNG and LPG are considered environmentally friendly compared to gasoline or diesel fuel. However, when these gaseous fuels are used, wear of the valve seat insert and valve face increases if materials meant for use with gasoline are adopted. In comparison to a gasoline engine, the oxide membrane that is formed on the sliding surfaces of the valve face and valve seat insert is limited. As a consequence, adhesion occurs and increased wear of these components is the result. Based on analysis materials that are more compatible with these gaseous fuels were developed.
X