Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Research and Development of a New Direct Injection Gasoline Engine

2000-03-06
2000-01-0530
A new stratified charge combustion system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle. The stratified mixture is produced by the combination of this fan-spray and a shell-shaped piston cavity. Both under-mixing and over-mixing of fuel in the stratified mixture is reduced by this system. This combustion system does not require distinct charge motion such as tumble or swirl, which enables intake port geometry to be simplified to improve full load performance. The effects of the new system on engine performance at part load are improved fuel consumption and reduced smoke, CO and HC emissions, obviously at medium load and medium engine speed. HC emissions at light load are also improved even with high EGR conditions.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
X