Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Technical Paper

Development of High Performance Three-Way-Catalyst Technology to Lower NOx Emission

2009-04-20
2009-01-1398
One primary result of the reduction of platinum group metals (PGM) within a catalytic converter is the decline in NOx conversion efficiency. This paper hypothesizes that the primary factor of this decline to be hydrocarbon (HC) poisoning. To maintain high NOx conversion efficiency as the PGM reduces, Rh activation improvement becomes significant to overcome the HC poisoning. Analysis of the Rh deterioration mechanism found that it is effective to separately arrange Rh and CeO2 on the converter, avoiding the Rh deactivation. By this improvement, we improved the catalyst activity at less than 25% of the original Rh loading.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
X