Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

1990-02-01
900705
In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Improvement of DI Diesel Engine System by Utilizing GTL Fuels Characteristics

2009-06-15
2009-01-1933
Gas To Liquid (GTL) fuels synthesized from natural gas are known as clean fuels. Therefore, GTL fuels have been expected to be a promising option that can reduce the NOx and PM emissions from diesel engines and contribute to the energy security. In this study, in order to clarify the emission reduction potentials, the improvement of DI diesel engine and aftertreatment systems were investigated by utilizing GTL fuels characteristics. To achieve a further reduction of both NOx and PM emissions, the combustion chamber, injection pattern and EGR calibration were modified. From the results of tests, the engine out NOx emissions were reduced to the Euro 6 regulation level and in parallel the expected deteriorations of HC emission and fuel consumption were suppressed because of the characteristics of high cetane number and zero poly-aromatics hydrocarbons. Additionally, an aftertreatment system was optimized to GTL fuel in order to improve NOx conversion efficiency.
Technical Paper

GTL Fuel Impact on DI Diesel Emissions

2007-07-23
2007-01-2004
Reduction of exhaust emissions was investigated in a modern diesel engine equipped with advanced diesel after treatment system using a Gas-to-Liquid (GTL) fuel, a cleaner burning alternative diesel fuel. This fuel has near zero sulfur and aromatics and high cetane number. Some specially prepared GTL fuel samples were used to study the effects of GTL fuel distillation characteristics on exhaust emissions before engine modification. Test results indicated that distillation range of GTL fuels has a significant impact on engine out PM. High cetane number also improved HC and CO emissions, while these fuel properties have little effect on NOx emissions. From these results, it was found that low distillation range and high cetane number GTL fuel can provide a favorable potential in NOx/PM emissions trade-off. In order to improve the tail-pipe emissions in the latest diesel engine system, the engine modifications were carried out for the most favorable GTL fuel sample.
Technical Paper

Feasibility Study of Exhaust Emissions in a Natural Gas Diesel Dual Fuel (DDF) Engine

2012-09-10
2012-01-1649
The Diesel Dual Fuel (DDF) vehicle is one of the technologies to convert diesel vehicles for natural gas usage. The purpose of this research was to study the possibility of a DDF vehicle to meet emission standards for diesel vehicles. This research was done for small passenger vehicles and commercial vehicles. The exhaust emissions compliance of such vehicles in a New European Driving Cycle (NEDC) mode which was composed of Urban Driving Cycles (UDC) and an Extra Urban Driving Cycle (EUDC) was evaluated. (see APPENDIXFigure A1) In this study, the passenger vehicle engine, compliant with the EURO4 standard, was converted to a DDF engine. Engine bench tests under steady state conditions showed similar result to previous papers. Total hydrocarbon (HC) emission was extremely high, compared to diesel engine. The NEDC mode emissions of the DDF vehicle were estimated based on these engine bench test results.
Technical Paper

Feasibility Study of Ethanol Applications to A Direct Injection Gasoline Engine

2007-07-23
2007-01-2037
Feasibility studies concerning ethanol utilization in direct injection gasoline engines were conducted in order to clarify the effects of ethanol on engine performance, exhaust emissions and injector deposit formation. The investigation results indicate that E100 (100% ethanol fuel) can improve full load engine performance around whole engine speed range in a high compression ratio engine (ε=13:1), compared to that of a base compression ratio engine (ε=11.5:1) operated on a premium gasoline. This was caused by the volumetric efficiency (ηv) improvement and engine knock suppression in the high compression ratio engine. On the other hand, HC emissions remarkably increased under lower engine speeds at a full load condition. This phenomenon suggests that poor combustion occurred due to insufficient mixing of air and E100 fuel under these conditions, in which the amount of ethanol injected was too large and fluidity in the cylinder was weak.
Technical Paper

Effects of RME30 on Exhaust Emissions and Combustion in a Diesel Engine

2008-10-06
2008-01-2499
Considering the popularity of biodiesel fuels for diesel vehicles, the impacts of rapeseed oil methyl ester (RME), which is the most utilized biodiesel fuel in Europe, on tailpipe emissions from a diesel passenger car was investigated. In this study, 30% RME blended diesel fuel (RME30) was used and the comparison of tailpipe emissions between RME30 and a reference diesel fuel was conducted using a test vehicle with the latest engine and aftertreatment system. The results of the investigation reveal that RME30 generates about the same amount of NOx in tailpipe emissions as diesel fuel, and less HC, CO, and PM. These phenomena occurred in spite of attaching catalysts to the test vehicle, and therefore suggesting that the NOx conversion efficiency of the catalysts for RME30 is equal to that for diesel fuel. The injection rate for RME30 was the same as that for diesel fuel.
Technical Paper

Effects of Next-Generation Bio Diesel Fuel on the Engine Performance

2015-09-01
2015-01-1928
Hydrotreated Vegetable Oil (HVO) and Sugar-to-Diesel as next-generation bio diesel fuels consist of normal and iso-paraffin, and those carbon number of paraffinic hydrocarbons and distillation characteristics are narrow distribution. These characteristics would cause to deteriorate the evaporation and mixture with air and fuel. Therefore, in this study, the effects of normal paraffin (Tridecane) and iso-paraffin (HVO) on emission characteristics and cold start performance in a diesel engine were investigated by engine dynamometer tests, cold start vehicle tests, and spray analyzer tests. From the results, it was found that normal and iso-paraffin are beneficial for HC, CO, Smoke emission reduction. In addition, isomerization is effective for the diesel engine to fulfill cold start performance, since normal paraffin of narrow carbon number distribution became solidified under low temperature and high pressure condition in a common rail system.
Technical Paper

Effects of GTL Fuel Properties on DI Diesel Combustion

2005-10-24
2005-01-3763
Reduction of vehicle exhaust emissions is an important contributor to improved air quality. At the same time demand is growing for new transportation fuels that can enhance security and diversity of energy supply. Gas to Liquids (GTL) Fuel has generated much interest from governments and automotive manufacturers. It is a liquid fuel derived from natural gas, and its properties - sulphur free, low polyaromatics and high cetane number - make it desirable for future clean light-duty diesel engines. In this paper, the effects of distillation characteristics and cetane number of experimental GTL test fuels on direct injection (DI) diesel combustion and exhaust emissions were investigated, together with their spray behaviour and mixing characteristics. The test results show that the lower distillation test fuels produce the largest reductions in smoke and PM emissions even at high cetane numbers. This is linked to the enhanced air/fuel mixing of the lighter fuel in a shorter time.
Technical Paper

Effects of Fuel Properties on Premixed Charge Compression Ignition Combustion in a Direct Injection Diesel Engine

2003-05-19
2003-01-1815
Effects of fuel distillation characteristics and cetane number on premixed charge compression ignition (PCCI) combustion were investigated for the purpose of reducing NOx and PM emissions from a direct injection diesel engine. The test engine had a hole type injection nozzle for conventional diesel combustion at high load operation. A low compression ratio and cooled EGR were applied to the test engine in order to reduce the compression temperature for avoiding pre-ignition. The investigation results show that, in the case of ignition control by EGR, a light fuel with lower distillation characteristics had an advantage of reducing smoke at higher loads. This means that high volatility fuel is effective in promoting lean mixture formation of fuel and air during the ignition delay. Moreover, lowering the cetane number was effective in reducing NOx emissions by suppression of combustion temperature.
Technical Paper

Effects of Cetane Number and Distillation Characteristics of Paraffinic Diesel Fuels on PM Emission from a DI Diesel Engine

2004-10-25
2004-01-2960
Fischer-Tropsch Diesel (FTD) fuel is expected to be a promising clean diesel fuel in the future because of its characteristics of zero sulfur, zero aromatics and a high cetane number. However, the optimum fuel properties for diesel engines have not been realized. In this study, the effects of cetane number and distillation characteristics on engine-out PM emissions from a conventional direct injection diesel engine were investigated by using paraffinic fuels which were made to simulate FTD fuel. From the results of the vehicle exhaust emissions test and engine dynamometer test, it was found that the narrow distillation characteristics (which eliminates heavy hydrocarbon fraction) could reduce the soluble organic fraction (SOF) in PM emissions, and the excess high cetane number characteristic promoted the formation of insoluble organic fraction (ISOF).
Technical Paper

Effect of Sulfur-free and Aromatics-free Diesel Fuel on Vehicle Exhaust Emissions using Simultaneous PM and NOx Reduction System

2003-05-19
2003-01-1865
A new diesel after-treatment system, Diesel Particulate and NOx Reduction System (DPNR), is being developed for reducing PM and NOx emissions. We examined the effects of sulfur content in lubricants on exhaust NOx emission from DPNR catalyst, and examined the PM reduction ability using sulfur-free and aromatics-free fuel. After vehicle durability testing of 40,000 km without forced regeneration of PM and sulfur poisoning on DPNR catalyst, deterioration of DPNR was lower than using higher sulfur contents in fuel and oil. In addition to decreasing fuel sulfur, decreasing oil sulfur was also effective to maintain high NOx conversion efficiency. Although the catalyst was poisoned by sulfur in the lubricants, the influence of oil sulfur poisoning on the catalyst was lower than fuel sulfur poisoning. On the other hand, engine out PM emissions decreased by 70 % because of aromatics-free fuel. The pressure drop of DPNR did not increase during the 40,000 km vehicle durability test.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 2: Effect of Branched and Ring Structures of Paraffins on Benzene and Soot Formation

1998-10-19
982495
The effect of the chemical reactivity of diesel fuel on PM formation was investigated using a flow reactor and a shock tube. Reaction products from the flow-reactor pyrolysis of the three diesel fuels used for the engine tests in Part 1(1) (“Base”, “Improved” and Swedish “Class-1”) were analyzed by gas chromatography. At 850C, Swedish “Class-1” fuel was found to produce the most PM precursors such as benzene and toluene among the three fuels, even though it contains very low amounts of aromatics. The chemical analyses described in Part 1 revealed that “Class-1” contains a large amount of branched and cyclic structures in the saturated hydrocarbon portion of the fuel. These results suggest that the presence of such branched and ring structures can increase exhaust PM emissions.
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Technical Paper

Analysis of Sulfur-Related White Smoke Emissions from DPF System

2015-09-01
2015-01-2023
In a Diesel engine with a Diesel particulate filter (DPF) system, high-sulfur fuel causes white smoke containing odorous and harmful pollutants during DPF regeneration. This study investigates the conditions and mechanisms of sulfur-related white smoke generation. Engine and vehicle tests found that sulfur compounds emitted from the engine accumulated on the catalysts in the DPF system and were emitted as white smoke during DPF regeneration. The white smoke was observed when the catalyst temperature was more than 450°C, under conditions such as the early stage of DPF regeneration. Model gas tests were conducted to clarify the mechanism of the white smoke. It was found that SO2 emitted from the engine was oxidized to SO3 on the catalyst, which was then mainly absorbed on the oxidation catalyst support (Al2O3). Then, the absorbed SO3 was desorbed and converted into white smoke.
X