Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

2006-04-03
2006-01-0881
Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Technical Paper

Validation of Control Software Specification Using Design Interests Extraction and Model Checking

2012-04-16
2012-01-0960
Automotive control systems such as powertrain control interact with the open physical environment, and from this nature, expensive prototyping is indispensable to capture a deep understanding of the system requirements and to develop the corresponding control software. Model-based development (MBD) has been promoted to improve productivity by virtual prototyping. Even with MBD, systematic validation of the software specification remains as a major challenge and it still depends heavily on individual engineers' skill and knowledge. Though the introduction of graphical software modeling improved the situation, it requires much time to identify the primal functions, so-called “design interests”, from a large complex model where irrelevant components are mixed with, and to validate it properly.
Technical Paper

The Motor Control Technologies for High-Power Hybrid System

2005-04-11
2005-01-0271
The Rx400h, which was put on the market in 2005, realized overwhelming power performance with the adoption of a high-voltage system, high-power output motor, and 3-motor type 4WD. Toyota has been working on a solution to increase the output power of the motor, i.e., the development of system stabilization technology. This paper introduces high-speed power balance control, which keeps the balance of power constant regardless of rapid changes in the number of motor rotations resulting from slipping tires or other factors, along with sensor error compensation control, which suppresses cyclic power fluctuation resulting from errors in the position sensor of the motor.
Technical Paper

Study of Unsteady Aerodynamics of a Car Model in Dynamic Pitching Motion

2016-04-05
2016-01-1609
The unsteady aerodynamic loads produced due to vehicle dynamic motions affect vehicle dynamic performance attributes such as straight-line stability or handling characteristics. To improve these dynamic performances, understanding the detailed mechanisms by which unsteady aerodynamic loads are caused during dynamic motions and the effects of unsteady aerodynamic loads on vehicle dynamic performance are needed. This paper describes the numerical study of unsteady aerodynamics of a 1/4 scale car model in dynamic pitching motion to clarify the detailed mechanisms by which unsteady aerodynamic loads are caused during the motion. Vortical structures around front wheelhouse and front under side of the body are analyzed by introducing schematic views to understand the mechanisms of unsteady flow fields. Furthermore, effects of aerodynamic devices devised based on the analyses on unsteady aerodynamics are discussed.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Technical Paper

ST-Lib: A Library for Specifying and Classifying Model Behaviors

2016-04-05
2016-01-0621
Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
Technical Paper

Remote Control Autonomous Driving System

2024-04-09
2024-01-2562
The concept of the vehicle has changed in accordance with the technological innovations on last decade. Today we can call these changes basically as "CASE" (Connected, Autonomous/Automated, Shared, and Electric). The ease of product access on the user side and the mass production related works have increased worldwide production volumes. This issue has resulted in a greater demand for manpower in the sector. In addition, management, productivity, and profitability related difficulties have occurred. In this project, improvements were made mainly around the productivity through the automation of "vehicle transfer operations in plant operations", which is one of a major problem and a manpower/hour consuming task. This system named as Remote-Control Auto Driving System (RCD). The advance technology used system enabling unmanned, secured operations, were implemented in mass production environment earlier than the rest of the world.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Technical Paper

Optimum Design of Hypoid Gear Dimension and Tooth Surface

2003-03-03
2003-01-0680
This paper describes and discusses the result of a comprehensive simulation analysis we have carried out to clarify the effects of gear dimensions, tooth surface modification, and manufacturing error on the static transmission error of automotive hypoid gears. Three representative factors have been analyzed contact ratio, crowning and pitch error because these characteristics play the most important role in tooth dimensions, tooth surface modification and manufacturing error. The analysis has clarified the effect of each factor on gear noise, making it possible to prepare a guideline for optimal design of gear dimensions and tooth surface modification under various conditions.
Technical Paper

New Slip Ring System for Electromagnetic Coupling in HEV Driveline

2016-04-05
2016-01-1222
This paper describes the slip ring system for a new hybrid system using an electromagnetic torque converter or an electromagnetic coupling. The slip ring system, which enables electric power transmission between a winding rotor and an inverter fixed on a case, is a key component for establishing a new highly efficient hybrid system. Reducing the wear of the brushes in the slip ring system is a major topic of this research. To achieve this objective, brush wear characteristics were investigated using test-piece experiments that simulated the hybrid system environment. By clarifying these characteristics, the structure of a slip ring system for reducing brush wear was identified and a wear prediction method was constructed.
Technical Paper

LED Headlamp Development for Mass Production

2008-04-14
2008-01-0339
To meet the market requirement for headlamps having lower power consumption, high photometric performance and long life whilst providing new styling opportunities, it has been anticipated that LED light sources would provide the necessary technological basis. Against this backdrop, Koito has succeeded in developing the necessary headlamp technologies and commercializing the world's first headlamp utilizing white LED's. The key point is that the various challenges associated with the development of an LED headlamp such as the commercial application of a synthesized light distribution, control of the light axis structure for the multi-lamp system, development of adequate thermal management for the cooling of the LED's and the achievement of volume production of the lamps have been successfully overcome.
Technical Paper

Internal Thrust Force Analysis of CVT Push Belt

2016-10-17
2016-01-2353
A CVT belt is composed of multiple elements and layered rings. Each of these component parts generates loss, including relative slippage caused by the geometrical relationship between the elements and innermost ring layer. An effective way of increasing CVT efficiency is to reduce this slippage. However, since the relative slippage also controls whether the rings transmit constant torque at all times, reducing the slippage will also have an effect on the torque transmission performance of the rings. Therefore, to improve CVT efficiency by reducing the relative slippage, it is first necessary to analyze the changes to torque transmission. However, this slippage is a phenomenon of the inner portion of the belt and it is extremely difficult to identify the internal thrust force when actual load is applied. This paper describes experiments carried out to analyze the changes in each torque transmission ratio when the relative slippage between the elements and innermost ring layer changes.
Technical Paper

Integrated Robot System Operation for Achieving High Productivity

2003-10-27
2003-01-2842
The integration of robot system operation is the most important and interesting issues for robot end users. Increasing robot operations by a growing variety of robots, applications, and models is a serious problem in maintaining high productivity and reducing maintenance cost. In the practical development of the Toyota global body assembly line (GBL), we designed a special robot operation and man-machine interface system based on the experience of robot operators. The Toyota Integrated Robot Operation System (IROS) offers remarkable advantages in the application of practical body assembly lines.
Journal Article

Improvement in Vehicle Motion Performance by Suppression of Aerodynamic Load Fluctuations

2015-04-14
2015-01-1537
This study focuses on fluctuations in the aerodynamic load acting on a hatchback car model under steady-state conditions, which can lead to degeneration of vehicle motion performance due to excitation of vehicle vibrations. Large eddy simulations were first conducted on a vehicle model based on a production hatchback car with and without additional aerodynamic devices that had received good subjective assessments by drivers. The numerical results showed that the magnitudes of the lateral load fluctuations were larger without the devices at Strouhal numbers less than approximately 0.1, where surface pressure fluctuations indicated a negative correlation between the two sides of the rear end, which could give rise to yawing and rolling vibrations. Based on the numerical results, wind-tunnel tests were performed with a 28%-scale hatchback car model.
Journal Article

Hierarchical Accumulative Validation of Executable Control Specifications

2013-04-08
2013-01-0430
The application of Model-Based Development (MBD) techniques for automotive control system and software development have become standard processes due to the potential for reduced development time and improved specification quality. In order to improve development productivity even further, it is imperative to introduce a systematic Verification and Validation (V&V) process to further minimize development time and human resources while ensuring control specification quality when developing large complex systems. Traditional methods for validating control specifications have been limited by control specification scale, structure and complexity as well as computational limitations restricting their application within a systematic model-based V&V process. In order to address these issues, Toyota developed Hierarchical Accumulative Validation (HAV) for systematically validating functionally structured executable control specifications.
Technical Paper

Experimental Analysis of Acoustic Coupling Vibration of Wheel and Suspension Vibration on Tire Cavity Resonance

2007-05-15
2007-01-2345
It is difficult to improve tire cavity noise since the pressure of cavity resonance acts as a compelling force, and its low damping and high gain characteristics dominate the vibration of both the suspension and body. For this reason, the analysis described in this article aimed to clarify the design factors involved and to improve this phenomenon at the source. This was accomplished by investigating the acoustic coupling vibration mode of the wheel, which is the component that transmits the pressure of cavity resonance at first. In addition, the vibration characteristic of suspension was investigated also. A speaker-equipped sound pressure generator inside the tire and wheel assembly was developed and used to infer that wheel vibration under cavity resonance is a forced vibration mode with respect to the cavity resonance pressure distribution, not an eigenvalue mode, and this phenomenon may therefore be improved by optimizing the out-of-plane torsional stiffness of the disk.
Journal Article

Electronic Power Steering Compensating Control for Influence of Vehicle Dynamics on Steering Torque

2009-04-20
2009-01-0049
The frequency response of steering effort torque changes according to the influence of vehicle dynamics. To help enhance feel, a new electronic power steering (EPS) control has been constructed. As the control can be achieved by the addition of a viscosity control with a filter to existing EPS systems, its structure is simple and easily installed. Actual vehicle tests have been performed to verify that the control is capable of enhancing convergence without adversely affecting response during steering.
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration while Turning (First Report)

2016-04-05
2016-01-1674
The research described in this paper aimed to study the cornering resistance and dissipation power on the tire contact patch, and to develop an efficient direct yaw moment control (DYC) during acceleration and deceleration while turning. A previously reported method [1], which formulates the cornering resistance in steady-state cornering, was extended to so-called quasi steady-state cornering that includes acceleration and deceleration while turning. Simulations revealed that the direct yaw moment reduces the dissipation power due to the load shift between the front and rear wheels. In addition, the optimum direct yaw moment cancels out the understeer augmented by acceleration. In contrast, anti-direct yaw moment optimizes the dissipation power during decelerating to maximize kinetic energy recovery. The optimization method proved that the optimum direct yaw moment can be achieved by equalizing the slip vectors of all the wheels.
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration While Turning (Second Report)

2016-04-05
2016-01-1677
Electric vehicles (EVs) are attracting attention due to growing awareness of environmental issues such as fossil fuel depletion and global warming. In particular, a wide range of research has examined how direct yaw moment controls (DYCs) can enhance the handling performance of EVs equipped with multiple in-wheel motors (IWMs) or the like. Recently, this research has focused on reducing energy consumption through driving force distribution control. The first report proposed a method to minimize energy consumption through an efficient DYC for extending the cruising range of a vehicle installed with four IWMs, and described the vehicle behavior with this control. Since motors allow high design flexibility, EVs can be developed with a variety of drive systems. For this reason, various driving force distribution control methods can be considered based on the adopted system.
X