Refine Your Search

Topic

Author

Search Results

Journal Article

Track, GoPro, and Prescan Testing of an ADAS Camera

2023-04-11
2023-01-0826
In order to validate the operation of advanced driver assistance systems (ADAS), tests must be performed that assess the performance of the system in response to different scenarios. Some of these systems are designed for crash-imminent situations, and safely testing them requires large stretches of controlled pavement, expensive surrogate targets, and a fully functional vehicle. As a possible more-manageable alternative to testing the full vehicle in these situations, this study sought to explore whether these systems could be isolated, and tests could be performed on a bench via a hardware-in-the-loop methodology. For camera systems, these benches are called Camera-in-the-Loop (CiL) systems and involve presenting visual stimuli to the device via an external input.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

Reverse Engineering Method for Developing Passenger Vehicle Finite Element Models

1999-03-01
1999-01-0083
A methodology to develop full-vehicle representation in the form of a finite element model for crashworthiness studies has been evolved. Detailed finite element models of two passenger vehicles - 1995 Chevy Lumina and 1994 Dodge Intrepid have been created. The models are intended for studying the vehicle’s behavior in full frontal, frontal offset and side impact collisions. These models are suitable for evaluating vehicle performance and occupant safety in a wide variety of impact situations, and are also suitable for part and material substitution studies to support PNGV (Partnership for New Generation of Vehicles) research. The geometry for these models was created by careful scanning and digitizing of the entire vehicle. High degree of detail is captured in the BIW, the front-end components and other areas involved in frontal, frontal offset and side impact on the driver’s side.
Technical Paper

Response of PMHS to High- and Low-Speed Oblique and Lateral Pneumatic Ram Impacts

2011-11-07
2011-22-0011
In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al., (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al., or similar as observed by ISO.
Technical Paper

Prescan Extension Testing of an ADAS Camera

2023-04-11
2023-01-0831
Testing vision-based advanced driver assistance systems (ADAS) in a Camera-in-the-Loop (CiL) bench setup, where external visual inputs are used to stimulate the system, provides an opportunity to experiment with a wide variety of test scenarios, different types of vehicle actors, vulnerable road users, and weather conditions that may be difficult to replicate in the real world. In addition, once the CiL bench is setup and operating, experiments can be performed in less time when compared to track testing alternatives. In order to better quantify normal operating zones, track testing results were used to identify behavior corridors via a statistical methodology. After determining normal operational variability via track testing of baseline stationary surrogate vehicle and pedestrian scenarios, these operating zones were applied to screen-based testing in a CiL test setup to determine particularly challenging scenarios which might benefit from replication in a track testing environment.
Technical Paper

Pedestrian head impact testing and PCDS reconstructions

2001-06-04
2001-06-0184
Pedestrian research and testing at the NHTSA Vehicle Research and Test Center has recently focused on assessment of proposed ISO and EEVC head impact test procedures, and extension of these procedures to additional vehicle frontal surfaces. In addition to test parameter sensitivity evaluation, reconstruction of PCDS (Pedestrian Crash Data Study) cases with laboratory impact tests and computer simulations has been conducted. This paper presents the results of this research.
Journal Article

NHTSA’s 2018 Heavy Vehicle Automatic Emergency Braking Test Track Research Results

2020-04-14
2020-01-1001
This paper presents National Highway Traffic Safety Administration’s 2017 and 2018 test track research results with heavy vehicles equipped with forward collision warning and automatic emergency braking systems. Newly developed objective test procedures were used to perform and collect performance data with three single-unit trucks equipped with the crash avoidance systems. The results of this research show that the test procedures are applicable to many heavy vehicles and indicate that performance improvements in heavy vehicles equipped with these safety systems can be objectively measured.
Technical Paper

NHTSA's Frontal Offset Research Program

2004-03-08
2004-01-1169
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the use of the 40 percent offset deformable barrier (ODB) crash test procedure to reduce death and injury, in particular debilitating lower extremity injuries in frontal offset collisions. This paper presents the results of 22 ODB crash tests conducted with 50th percentile male and 5th percentile female Hybrid III (HIII) dummies fitted with advanced lower legs, Thor-Lx/HIIIr and Thor-FLx/HIIIr, to assess the potential for debilitating and costly lower limb injuries. This paper also begins to investigate the implications that the ODB test procedure may have for fleet compatibility by evaluating the results from vehicle-to-vehicle crash tests.
Technical Paper

NHTSA'S research program for vehicle aggressivity and fleet compatibility

2001-06-04
2001-06-0179
This paper presents an overview of NHTSA's vehicle aggressivity and fleet compatibility research activities. This research program is being conducted in close cooperation with the International Harmonized Research Agenda (IHRA) compatibility research group. NHTSA is monitoring the changing vehicle mix in the U.S. fleet, analyzing crash statistics, and evaluating any implications that these changes may have for U.S. occupant safety. NHTSA is also continuing full-scale crash testing to develop a better understanding of vehicle compatibility and to investigate test methods to assess vehicle compatibility.
Technical Paper

NHTSA'S crashworthiness modelling activities

2001-06-04
2001-06-0178
NHTSA uses a variety of computer modelling techniques to develop and evaluate test methods and mitigation concepts, and to estimate safety benefits for many of NHTSA's research activities. Computer modeling has been particularly beneficial for estimating safety benefits where often very little data are available. Also modeling allows researchers to augment test data by simulating crashes over a wider range of conditions than would otherwise be feasible. These capabilities are used for a wide range of projects from school bus to frontal, side, and rollover research programs. This paper provides an overview of these activities. NHTSA's most extensive modeling research involves developing finite element and articulated mass models to evaluate a range of vehicles and crash environments. These models are being used to develop a fleet wide systems model for evaluating compatibility issues.
Technical Paper

Light Vehicle Frontal Impact Protection

1982-02-01
820243
This paper addresses the protection of occupants in light vehicles. It presents data and techniques for identifying and measuring potential crashworthiness improvements that would mitigate injuries to occupants striking frontal interior components such as the steering wheel, instrument panel and windshield. Both restrained and unrestrained occupants can be injured by frontal interior components in crashes. The focus of this paper is on the unrestrained occupant. However, performance criteria and associated countermeasures will have to be developed considering the differences in the mechanisms of injury to both the restrained and unrestrained occupants. Work on the restrained occupant and the similarities and differences between both conditions remains to be considered. The paper presents information on the magnitude and types of injuries received from frontal interior components and on how the performance of these components and the vehicle structure affect the resultant injuries.
Technical Paper

Injury Severity in Restrained Children in Motor Vehicle Crashes

1995-11-01
952711
The paper reviews one hundred and three (103) cases of restrained children involved in motor vehicle crashes and admitted to the level I trauma center at Children's National Medical Center (CNMC). Thirty percent (30%) of these cases involved injuries with an Abbreviated InjuryScore (AIS) severity of 3 or greater. All cases are classified first by type of restraint system, i.e. infant seat, convertible seat, booster seat, lap belt, and lap and shoulder belt, and second, by type of injury sustained, i.e. head/face and neck, upper extremity, thorax, pelvic and abdominal, and lower extremity. The links between these classifications are examined to identify particular injury patterns associated with the use of individual restraint systems, e.g. the incidence of pelvic and abdominal injury associated with the use of both lap and lap and shoulder belts. For the severe injury cases the paper further examines the injury mechanisms for the most commonly observed patterns.
Journal Article

Hardware-in-the-Loop Pneumatic Braking System for Heavy Truck Testing of Advanced Electronic Safety Interventions

2016-04-05
2016-01-1648
The rapid innovation underway with vehicle brake safety systems leads to extensive evaluation and testing by system developers and regulatory agencies. The ability to evaluate complex heavy truck braking systems is potentially more rapid and economical through hardware-in-the-loop (HiL) simulation which employs the actual electronics and vehicle hardware. Though the initial HiL system development is time consuming and expensive, tests conducted on the completed system do not require track time, fuel, vehicle maintenance, or technician labor for driving or truck configuration changes. Truck and trailer configuration and loading as well as test scenarios can be rapidly adjusted within the vehicle dynamics simulation software to evaluate the performance of automated safety interventions (such as ESC) over a wide range of conditions.
Technical Paper

Evaluation of injury risk from side impact air bags

2001-06-04
2001-06-0091
Several thoracic and head protection side impact air bag systems (SAB) are emerging in the U.S. market and are projected to become prevalent in the fleet. These systems appear to offer superior protection in side crashes. However, concerns have been raised as to their potential for causing injury to out-of-position (OOP) occupants. This paper describes the National Highway Traffic Safety Administration (NHTSA) program for evaluation of the SAB systems for OOP occupants and provides a status report on the current research. The industry's Side Airbag Out-of- Position Injury Technical Working Group (TWG) recommended procedures for 3-year-old and 6-year-old occupants are evaluated. Additional test procedures are described to augment the TWG procedures for these occupants and 12-month- old infants.
Technical Paper

Evaluation of Neck Bracket Angles and Neck Torque Procedures in the Hybrid III Small Female Neck Flexion Test

2008-04-14
2008-01-0530
Lab-to-lab differences are an important consideration in the verification testing of Hybrid III dummy necks in user labs. The authors, the Anthropomorphic test device Certification Research group (ACR), conducted and presented two previous studies investigating lab to lab differences in Hybrid III 5th female dummy neck certification results [1, 2]. The results of both studies underscored the need to have better controls on the test procedure. The complex procedure for dummy neck certification has many setup factors that can contribute to test variation and unacceptable precision. Two steps within this protocol - two aspects of the neck's physical setup - were identified by the ACR group as potential sources for variation: 1) setting the pre-test D-plane angle by neck bracket adjustment, and 2) setting the torque on the neck cable. Fifth female neck flexion tests were conducted with variations in these factors to determine their effect on neck test results.
Technical Paper

Evaluation of Car-to-Car Frontal Offset Impact Finite Element Models Using Full Scale Crash Data

1995-02-01
950650
This paper describes the results of a study conducted to evaluate the performance and accuracy of a medium size sedan finite element model for off-set car-to-car impacts. This model was originally developed for front impact and does not include side structure compliance. Two tests conducted by the National Highway Traffic Safety Administration are used for evaluation of the simulations. The overall results indicate that the simulations appear to be consistent with the crash test data. Problems associated with the use of node constraints, lack of side structure model fidelity, and the different integration time marching are identified and solutions for the problems are proposed.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

Development of THOR-FLx: A Biofidelic Lower Extremity for Use with 5th Percentile Female Crash Test Dummies

2002-11-11
2002-22-0014
A new lower leg/ankle/foot system has been designed and fabricated to assess the potential for lower limb injuries to small females in the automotive crash environment. The new lower extremity can be retrofitted at present to the distal femur of the 5th percentile female Hybrid III dummy. Future plans are for integration of this design into the 5th percentile female THOR dummy now under development. The anthropometry of the lower leg and foot is based mainly on data developed by Robbins for the 5th percentile female, while the biomechanical response requirements are based upon scaling of 50th percentile male THOR-Lx responses. The design consists of the knee, tibia, ankle joints, foot, a representation of the Achilles tendon, and associated flesh/skins. The new lower extremity, known as THOR-FLx, is designed to be biofidelic under dynamic axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/eversion.
Technical Paper

Determining the Precision of the Hybrid III Small Female Neck Calibration Laboratory Test Procedure Using ASTM E 691

2007-04-16
2007-01-1172
Lab-to-lab differences have become a very important consideration in the verification testing of Hybrid III 5th Female necks in user labs. It has been observed that a neck certified by one laboratory does not always pass the same certification test in a different lab. This has led the Anthropomorphic test device Certification Research group (ACR) to investigate the precision of the test procedure in relation to the test specification corridors. This study adapts an industry recognized ASTM procedure to measure the precision of the SAE neck calibration laboratory test procedure in Engineering Aid 25 [1]. The ASTM procedure is ASTM E 691-99 “Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method” [2]. This paper details how the ASTM procedure was adapted and presents the results of the ASTM E 691 statistical analysis procedures.
Technical Paper

Design Considerations for a Compatibility Test Procedure

2002-03-04
2002-01-1022
A major focus of the National Highway Traffic Safety Administration's (NHTSA) vehicle compatibility and aggressivity research program is the development of a laboratory test procedure to evaluate compatibility. This paper is written to explain the associated goals, issues, and design considerations and to review the preliminary results from this ongoing research program. One of NHTSA's activities supporting the development of a test procedure involves investigating the use of an mobile deformable barrier (MDB) into vehicle test to evaluate both the self-protection (crashworthiness) and the partner-protection (compatibility) of the subject vehicle. For this development, the MDB is intended to represent the median or expected crash partner. This representiveness includes such vehicle characteristics as weight, size, and frontal stiffness. This paper presents distributions of vehicle measurements based on 1996 fleet registration data.
X