Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Visualization of Partially Premixed Combustion of Gasoline-like Fuel Using High Speed Imaging in a Constant Volume Vessel

2012-04-16
2012-01-1236
Combustion visualizations were carried out in a constant volume vessel to study the partially premixed combustion of a gasoline-like fuel using high speed imaging. The test fuel (G80H20) is composed by volume 80% commercial gasoline and 20% n-heptane. The effects of ambient gas composition, ambient temperature and injection pressure on G80H20 combustion characteristics were analyzed. Meanwhile, a comparison of the EGR effect on combustion process between G80H20 and diesel was made. Four ambient gas conditions that represent the in-cylinder gas compositions of a heavy-duty diesel engine with EGR ratios of 0%, 20%, 40% and 60% were used to simulate EGR conditions. Variables also include two ambient temperature (910K and 870K) and two injection pressure (20 MPa and 50 MPa) conditions.
Technical Paper

Understanding Interaction between Reactive Jets in Pre-Chamber Ignition of Gaseous Fuel

2023-04-11
2023-01-0225
In order to improve the ignition capacity and burning rate for spark-ignited engines, pre-chamber jet ignition is a promising technique to achieve fast premixed combustion and low pollutant emissions. However, few studies focus on the interaction between multiple reacting (i.e. flamelet) or reacted (i.e. radical) jets, its effect on ignition, exotherm and flow behaviors also remain to be revealed. This paper investigated two types of jet interaction under different pre-chamber structures, including the jet-crossing and unequal nozzle designs. Optical experiments under different conditions were conducted in a constant volume combustion chamber with CH4 as fuel, using simultaneous high speed schlieren and OH* chemiluminescence method. Meanwhile, computational fluid dynamics (CFD) simulations with CH4 and NH3/CH4 blend fuels were carried out using Converge software to provide further insights of turbulent flow and ignition process.
Technical Paper

Study on Modeling Method for Common Rail Diesel Engine Calibration and Optimization

2004-03-08
2004-01-0426
The large amount of controllable fuel injection parameters of Diesel engine equipped with high pressure common-rail fuel injection system makes the control of combustion more flexible, and also makes the workload of calibration and optimization much heavier. For higher efficiency, model-based approaches are presented and researched. This contribution presents a new method for modeling which is constituted by Neural Network and Adaptive Network-based Fussy Inference System (ANFIS). The experiment is carried out on a 6-cylinder common rail diesel engine. The analysis and experiment show that effective modeling can be achieved using this method.
Technical Paper

Study on Engine Start Vibration Index in a Hybrid Powertrain Using Torque Sensor and Cylinder Pressure Sensor

2019-11-04
2019-01-5034
This paper presents an investigation of drivability issue of engine start-stop. Hybrid vehicles provide excellent benefits regarding fuel efficiency and emission. However, vibration results from constant engine start and stop events generate drivability issues, thus compromising driving comfort. This paper has designed a high speed torque sensor to capture instantaneous torque at the engine shaft. Its consequences help to find out the most suitable index of vibration severity. This paper is organized in four sections. The first section introduces the powertrain to be studied. The second section introduces development of a specially designed torque sensor. The torque sensor is installed between the engine and ISG (Integrated Starter Generator), alongside with an encoder. The torque sensor is utilized to collect the instantaneous shaft torque on occasion of engine start. In the third section, this paper has performed two experiments.
Technical Paper

Study of the Injection Control Valve in a New Electronic Diesel Fuel System

1998-02-23
980813
At first, the dynamic electromagnetic characteristics of a pulsed solenoid valve is analyzed by experiments. The fast valve response is obtained by material modifications. Then, the intelligent solenoid driving method is discussed. The new techniques of the “active” PWM and the “d2i/dt2” detection are developed for feedback control of the solenoid holding current and the valve closure timing. Finally, the control and diagnosis method for the valve closure duration is investigated. A sensing mechanism utilizing momentary camshaft speed fluctuations of fuel injection pump is presented, which provides the basis for feedback control and diagnosis of the valve closure duration and diesel fuel injection process.
Technical Paper

Study of the Control Strategy of the Plateau Self-adapted Turbocharging System for Diesel Engine

2008-06-23
2008-01-1636
A plateau self-adapted turbocharging system based on variable geometry turbocharger (VGT) technology is proposed to solve the problem of diesel engine operating at plateau. The control strategy of the plateau self-adapted turbocharging system is studied using a GT-Power engine model. The control strategy is based on the optimization of the VGT nozzle vane position at various engine operating conditions and various altitudes. Simulation results show that by optimizing the matching and controlling the VGT, the performance of the engine matched with VGT can be improved significantly compared with the one matched with FGT (fixed geometry turbocharger) at various altitudes. Surge and overspeed phenomena of the turbocharger can also be avoided.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

Simulation Research on Engine Speed Fluctuation Suppression Based on Engine Torque Observer by Using a Flywheel ISG

2019-04-02
2019-01-0787
This paper conducts simulation research on engine torque ripple suppression based on the engine torque observer by using a flywheel-ISG (integrated starter generator). Usually, engine torque can be suppressed by using a passive method such as by installing a flywheel or torsional damper. However, failure problems arise in hybrid system because of different mechanical characters of the engine and its co-axial ISG motor. On the prototype test bench, the flywheel of the engine has been removed and replaced by an ISG rotor, namely FISG (flywheel ISG). Besides, the crank and FISG rotor are directly connected, which means no dampers or clutches are installed. If the engine torque ripples can be suppressed by the same level as the flywheel and damper by FISG active torque compensation, the new system can be more compact and economical. Simulation efforts are made to verify its feasibility. Firstly, based on the experimental test bench, which is currently under construction.
Technical Paper

Simulation Investigation of Turbulent Jet Ignition (TJI) Combustion in a Dedicated Hybrid Engine under Stoichiometric Condition

2024-04-09
2024-01-2111
Turbulent jet ignition (TJI) combustion using pre-chamber ignition can accelerate the combustion speed in the cylinder and has garnered growing interest in recent years. However, it is complicated for the optimization of the pre-chamber structure and combustion system. This study investigated the effects of the pre-chamber structure and the intake ports on the combustion characteristics of a gasoline engine through CFD simulation. Spark ignition (SI) combustion simulation was also conducted for comparison. The results showed that the design of the pre-chamber that causes the jet flame colliding with walls severely worsen the combustion, increasing the knocking intendency, and decrease the thermal efficiency. Compared with SI combustion mode, the TJI combustion mode has the higher heat transfer loss and lower unburned loss. The well-optimized pre-chamber can accelerate the flame propagation with knock suppression.
Technical Paper

Research on the Pollutant Reduction Control for P2.5 Hybrid Electric Vehicles

2024-04-09
2024-01-2376
The strategy for emission reduction in the P2.5 hybrid system involves the optimization of engine torque, engine speed, catalyst heat duration, and motor torque regulation in a coordinated manner. In addition to employing traditional engine control methods used in HEV models, unique approaches can be utilized to effectively manage emissions. The primary principle is to ensure that the engine operates predominantly under steady-state conditions or limits its load to regulate emissions levels. The main contributions of this paper are as follows: The first is the optimization of catalyst heating stage. During the catalyst heating stage, the system divides it into one or two stages. In the first stage, the vehicle is driven by the motor while keeping the engine idle. This approach stabilizes catalyst heating and prevents fluctuations in air-fuel ratio caused by speed and load changes that could potentially worsen emissions performance.
Technical Paper

Research on the Oscillation Reduction Control During Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2720
In order to realize the series-parallel switching control of hybrid electric vehicle (HEV) with dual-motor hybrid configuration, a method of unpowered interrupt switching based on the coordinated control of three power sources was proposed by analyzing the series-parallel driving mode of the dual-motor hybrid configuration. The series to parallel switching process is divided into three stages: speed regulation stage, clutch combination and power source switching. The distribution control of speed regulating torque is carried out in the speed regulating stage. The speed adjustment torque is preferentially allocated to the power source of the input shaft (engine and P1) to carry out the lifting torque. Due to the high speed adjustment accuracy and fast response of the P1 motor, the input shaft is preferentially allocated to P1 for speed adjustment, that is, the torque intervention of P1.
Technical Paper

Research on the Oscillation Reduction Control During High Voltage Battery Failure in Hybrid Electric Vehicles

2024-04-09
2024-01-2717
In order to achieve seamless mode switching control for hybrid electric vehicles (HEVs) in the event of battery failure, we propose a motor voltage-controlled mode switching method that eliminates power interruptions. This approach is based on an analysis of the dual-motor hybrid configuration's mode switching. We analyze the overall vehicle operation when the high-voltage battery occurs in different hybrid modes. To ensure that the vehicle can still function like a conventional car under such circumstances, we introduce a novel "voltage control" mode. In this mode, instead of operating in its traditional torque control manner, the P1 motor adopts a voltage control strategy. The P1 controller's variable becomes "voltage," and VCU sends the motor's working mode switching request and PCM finishes the mode transition. During system operation, the P1 motor promptly responds to these target voltages to maintain bus voltage within a normal range.
Technical Paper

Research on the Oscillation Reduction Control During Gearshift in Hybrid Electric Vehicles

2024-04-09
2024-01-2718
In order to realize the shift control of dual-motor hybrid electric vehicle (HEV), a non-power interruption shift control method based on three-power source coordination control was proposed by analyzing the shift process of dual-motor hybrid configuration. The shift control process was divided into three stages: oil-filling self-learning stage, torque exchange stage and inertia control stage. In the torque exchange stage, the characteristics of the speed stage and torque stage were analyzed, which was different from the traditional method's dependence on pressure sensor, longitudinal acceleration sensor and engine torque accuracy. A shift clutch gain self-learning strategy based on shift time and input shaft speed soaring problem was proposed.
Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Pure Electric Mode

2024-04-09
2024-01-2713
In hybrid vehicles, the drive motor is directly connected to the drive train and the inherent drive train damping is low. When subjected to external disturbance, the low damping characteristics of the transmission system may cause torsional vibration, which will continue to oscillate the transmission system and affect the driving performance of the vehicle. In this paper, we propose a harmonic injection wheel control method based on motor speed to suppress oscillations and improve the driving performance of hybrid electric vehicles. The harmonic injection control method based on motor speed is based on Fourier transform to decompose sinusoidal harmonics based on specific order of motor speed. RLS algorithm is used to estimate the amplitude and phase, and PI control is used to calculate the compensation torque for the actual amplitude and target amplitude. Simulation and test results show that the proposed control strategy is effective in suppressing oscillations.
Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Parallel Mode

2024-04-09
2024-01-2714
In order to solve the problems of the shuffle caused by internal and external excitation and the difficulty in obtaining the real-time accurate engine torque during the parallel mode operation of hybrid electric vehicles, a dynamic coordination control strategy for suppressing the jitter of hybrid electric vehicles based on the closed-loop control of engine speed was proposed. The engine torque filtering control method based on the slope limit was adopted to limit the rate of change of the engine torque and reduce the impact caused by the sudden change of the engine torque; the engine speed closed-loop control method was used to take the motor speed which is easy to be measured accurately in real time as the feedback control variable, which solved the problem of the real-time accurate estimation of the engine torque online. In parallel mode, the motor torque accounts for a small proportion because the torque distribution method gives priority to the engine.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Research on Coordinated Control during Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2788
Due to the objectives of achieving high fuel efficiency and drivability performance, a dual-drive hybrid system with two motors has been developed. Various drive modes are presented based on engine status, requested driver torque and power, as well as C0 status in different working conditions. The transition control of drive mode change poses a unique challenge for the dual-drive hybrid system. This study discusses the control strategies for transitioning between drive modes. The first type of transition mode is divided into four distinct phases. In the second mode transition, there are three phases: the synchronization phase involving P1 torque intervention, the C0 lock-up phase involving frozen P1 torque control and adjustment of C0 clutch torque and pressure correlation, and finally, the torque exchange phase. The third type of transition includes a dedicated torque transition phase followed by a C0 disengaged phase and concluding with a speed synchronization phase.
Technical Paper

Relative Impact of Chemical and Physical Properties of the Oil-Fuel Droplet on Pre-Ignition and Super-Knock in Turbocharged Gasoline Engines

2016-10-17
2016-01-2278
A conceptual approach to help understand and simulate droplet induced pre-ignition is presented. The complex phenomenon of oil-fuel droplet induced pre-ignition has been decomposed to its elementary processes. This approach helps identify the key fluid properties and engine parameters that affect the pre-ignition phenomenon, and could be used to control LSPI. Based on the conceptual model, a 3D CFD engine simulation has been developed which is able to realistically model all of the elementary processes involved in droplet induced pre-ignition. The simulation was successfully able to predict droplet induced pre-ignition at conditions where the phenomenon has been experimentally observed. The simulation has been able to help explain the observation of pre-ignition advancement relative to injection timing as experimentally observed in a previous study [6].
X