Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Tire Force Fast Estimation Method for Vehicle Dynamics Stability Real Time Control

2007-10-30
2007-01-4244
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper

The Impact of Injector Deposits on Spray and Particulate Emission of Advanced Gasoline Direct Injection Vehicle

2016-10-17
2016-01-2284
Gasoline Direct Injection (GDI) engines have developed rapidly in recent years driven by fuel efficiency and consumption requirements, but face challenges such as injector deposits and particulate emissions compared to Port Fuel Injection (PFI) engines. While the mechanisms of GDI injector deposits formation and that of particulate emissions have been respectively revealed well, the impact of GDI injector deposits and their relation to particulate emissions have not yet been understood very well through systematic approach to investigate vehicle emissions together with injector spray analysis. In this paper, an experimental study was conducted on a GDI vehicle produced by a Chinese Original Equipment Manufacturer (OEM) and an optical spray test bench to determine the impact of injector deposits on spray and particulate emissions.
Technical Paper

The Impact of GDI Injector Deposits on Engine Combustion and Emission

2017-10-08
2017-01-2248
Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
Technical Paper

The Differential Braking Steering Control of Special Purpose Flat-Bed Electric Vehicle

2019-04-02
2019-01-0440
Special purpose flat-bed vehicle is commonly utilized to move heavily items such as containers in warehouse, port and other freight handling scene, the hydraulic steering system have be gradually replaced by electric ones. However, the cost of electric steering system is high for commercial activities. Thus, for some corporates, the differential braking steering strategy becomes an ideal alternative. The purpose of this paper is to present a steering control method for flat-bed electric vehicle based on differential braking system. There are two main components of the control method, steering while moving forward and pivot steering, and each of them was composed by upper layer and executive layer. To evaluate the practicability of the control methods, a 7-DOF flat-bed vehicle model was established in Simulink.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

Research on the Pollutant Reduction Control for P2.5 Hybrid Electric Vehicles

2024-04-09
2024-01-2376
The strategy for emission reduction in the P2.5 hybrid system involves the optimization of engine torque, engine speed, catalyst heat duration, and motor torque regulation in a coordinated manner. In addition to employing traditional engine control methods used in HEV models, unique approaches can be utilized to effectively manage emissions. The primary principle is to ensure that the engine operates predominantly under steady-state conditions or limits its load to regulate emissions levels. The main contributions of this paper are as follows: The first is the optimization of catalyst heating stage. During the catalyst heating stage, the system divides it into one or two stages. In the first stage, the vehicle is driven by the motor while keeping the engine idle. This approach stabilizes catalyst heating and prevents fluctuations in air-fuel ratio caused by speed and load changes that could potentially worsen emissions performance.
Technical Paper

Potential Fuel Consumption Improvement Analysis for Integrated Starter Generator System Base on the New European Drive-cycle

2008-06-23
2008-01-1570
A conventional vehicle with gasoline engine was tested on a chassis dynamometer over the new European drive-cycle (NEDC). The distributions of the engine speed and power, the throttle positions during the drive cycle are analyzed. Engine idling, acceleration and deceleration take an important proportion in the drive cycle. If engine idling is instead by engine stop, the fuel consumption will be improved by 2.27%. In an Integrated Starter Generator (ISG) system, with the assist of the starter/generator, transient operation of the engine will decrease, which reduces fuel consumption by 6%. Fuel economy will be also improved by braking regeneration and restricting operating points to an optimized region, the details are not discussed in this paper. To reduce fuel consumption further, the region where engine usually runs in urban traffic, should be paid more attention to while engine calibration.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

Multi-Objective Optimization Design of Hybrid Material Bumper for Pedestrian Protection and Crashworthiness Design

2020-04-14
2020-01-0201
In vehicle accident, the bumper beam generally requires high stiffness for sufficient survival space for occupants while it may cause serious pedestrian lower extremity injuries. The aim of this study is to promote an aluminum-steel hybrid material double-hat bumper to meet the comprehensive requirements. The hybrid bumper is designed to improve the frontal crash and pedestrian protection performances in collision accidents. Finite element (FE) models of the hybrid bumper was built, validated, and integrated into an automotive model. The Fixed Deformable Barrier (FDB) and Transport Research Laboratory (TRL) legform model were used to obtain the vehicle crashworthiness and pedestrian lower leg injury indicators. Numerical results showed that the hybrid bumper had a great potential for crashworthiness performance and pedestrian protection characteristics. Based on this, a multi-objective optimization design (MOD) was performed to search the optimal geometric parameters.
Technical Paper

Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning

2022-03-31
2022-01-7014
This work presents a multi-objective adaptive cruise control (ACC) system via deep reinforcement learning (DRL). During the control period, it quantitatively considers three indexes: tracking accuracy, riding comfort, and fuel economy. The system balances contradictions between different indexes to achieve the best overall control results. First, a hierarchical control architecture is utilized, where the upper level controller is synthesized under DRL framework to give out the vehicle desired acceleration. The lower level controller executes the command and compensates vehicle dynamics. Then, four state variables that can comprehensively determine the car-following states are selected for better convergence. Multi-objective reward function is quantitatively designed referring to the evaluation indexes, in which safety constraints are considered by adding violation penalty. Thereafter, the training environment which excludes the disturbance of preceding car acceleration is built.
Journal Article

Modeling and Experiment Validation of the DC/DC Converter for Online AC Impedance Identification of the Lithium-Ion Battery

2017-03-28
2017-01-1198
The lithium-ion battery plays an important role in saving energy and lowering emissions. Many parameters like temperature have an influence on the characteristic of the battery and this phenomenon becomes more serious in an electric vehicle. In this paper, the application of a boost DC/DC converter to the battery system of high power for online AC impedance identification is proposed. The function of the converter is to inject a current excitation signal into the battery at work and the normal output current is drawn by a load. Through analyzing the average state space equations and deriving the small signal model of the converter, the gain function is deduced of the fluctuated current signal against the fluctuated duty cycle which controls the converter. The control algorithm is designed and the system model is verified using Matlab/Simulink with respect to the disturbance current signal generation, the gain function and its variation with frequency range.
Technical Paper

Mission-based Design Space Exploration for Powertrain Electrification of Series Plugin Hybrid Electric Delivery Truck

2018-04-03
2018-01-1027
Hybrid electric vehicles (HEV) are essential for reducing fuel consumption and emissions. However, when analyzing different segments of the transportation industry, for example, public transportation or different sizes of delivery trucks and how the HEV are used, it is clear that one powertrain may not be optimal in all situations. Choosing a hybrid powertrain architecture and proper component sizes for different applications is an important task to find the optimal trade-off between fuel economy, drivability, and vehicle cost. However, exploring and evaluating all possible architectures and component sizes is a time-consuming task. A search algorithm, using Gaussian Processes, is proposed that simultaneously explores multiple architecture options, to identify the Pareto-optimal solutions.
Technical Paper

Mechanism of Neutral-Idle Shudder Phenomenon in an Automatic Transmission System

2016-04-05
2016-01-1128
Neutral-idle strategy has been applied for years to improve the fuel consumption of automatic transmission cars. The updated demand is the use of expanded slipping control strategy for further improvement of the transmission efficiency and response speed. However, one major drawback of the continuous slipping clutches is the high tendency to produce shudder or low frequency variation. In this research, a special neutral-idle shudder phenomenon is presented. This special shudder is not only related to slipping clutches but also related to the vibration and structure of the powertrain system. Simulations and experiments are conducted to give an insight view of this phenomenon. The analysis reveals that this special shudder is caused by both torsional vibration of the driveline and rigid-body vibration of the powertrain system. A positive feedback loop between those two kinds of vibrations leads to this special neutral-idle shudder.
Technical Paper

Mechanical Anisotropy and Strain-Rate Dependency of a Large Format Lithium-Ion Battery Cell: Experiments and Simulations

2021-04-06
2021-01-0755
In order to get a better understanding of the mechanical behavior of lithium-ion battery cells, especially for the mechanical anisotropy and dynamic effect, a series of tests for quasi-static indentation and dynamic impact tests has been designed. In the study, mechanical indentation tests with different indentation heads, different loading directions and different impact speeds were performed on a type of large format prismatic lithium-ion battery cells and jellyrolls of them. To mitigate thermal runaway, only fully-discharged cells and jellyrolls were used. The force-displacement response and open circuit voltage (OCV) were recorded and compared. It shows that jellyroll and battery cell have apparent mechanical anisotropy and strain-rate effect. The stiffness of jellyroll and cell in out-of-plane direction is much larger than that in two in-plane directions.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Integrated System Simulation for Turbocharged IC Engines

2008-06-23
2008-01-1640
An integrated simulation platform for turbocharged internal combustion engines has been developed. Multi-dimensional computational fluid dynamic (CFD) codes are integrated into the system to model the turbocharging circuit, gas circuit, in-cylinder circuit, coolant and oil circuits. As the turbocharger is a critical factor for the IC engine, a turbocharger through-flow model based on mass, momentum, and energy conservation equations has been developed and added in the integrated platform. Compared with the traditional MAP method, the through-flow model can solve the problems of transient matching and lack of numerous experimental maps during the pre-prototype engine design. Partial systems in the integrated platform, such as the in-cylinder flow and combustion circuit, can be modeled by 3-D CFD codes for the investigation of the detailed flow patterns.
Technical Paper

Influence of Mass Distribution of Battery and Occupant on Crash Response of Small Lightweight Electric Vehicle

2015-04-14
2015-01-0575
Small lightweight electric vehicle (SLEV) is an approach for compensating low energy density of the current battery. However, small lightweight vehicle presents technical challenges to crash safety design. One issue is that mass of battery pack and occupants is a significant portion of vehicle's total weight, and therefore, the mass distribution has great influence on crash response. This paper presents a parametric analysis using finite element modeling. We first build LS-DYNA model of a two-seater SLEV with curb weight of 600 kg. The model has no complex components and can provide reasonable crash pulses under full frontal rigid barrier crash loading and offset deformable barrier (ODB) crash loading. For given mass of battery pack and one occupant (the driver), different battery layouts, representing different combinations of center of gravity and moment of inertia of the whole vehicle, are analyzed for their influences on the crash responses under the two frontal crash loadings.
Technical Paper

In-situ Mechanical Characterization of Compression Response of Anode Coating Materials through Inverse Approach

2022-12-16
2022-01-7121
In this decade, the detailed multi-layer FE model is always applied for investigating the mechanical behavior of Li-ion batteries under mechanical abuse. However, establishing a detailed model of different types of batteries requires a series of material characterization of components. To improve the efficiency of the procedure of component calibration, we introduce a procedure of automatic coating material characterization as an example to represent the strategy. The proposed method is constructing a response solver through MATLAB to predict the mechanical behavior of the coating specimen's representative volume element (RVE) under designated test conditions. The coating material is represented through Drucker-Prager-Cap (DPC) model. All parameters, including boundary conditions and material parameters, are included in this solver.
Technical Paper

Impact of Fuel Properties on GDI Injector Deposit Formation and Particulate Matter Emissions

2020-04-14
2020-01-0388
Gasoline Direct Injection (GDI) engines show advantages in reducing fuel consumption and gaseous pollution emissions when compared to Port Fuel Injection (PFI) engines. However, particulate matter emissions are an essential issue for GDI engine development due to increasingly stringent worldwide emission regulations. Previous studies have shown that gasoline fuel compositions, as well as deposits formed in GDI fuel injectors, can affect emissions in the GDI engine. In this work, the impact of gasoline fuel properties on forming injector deposits and the resulting effect on particulate emissions were investigated using a modern Chinese GDI engine. Six test fuels with different properties involving changes in olefins, aromatics, heavy (C9/C9+) aromatics, T90 and deposit control additive (DCA) were prepared based on the gasoline survey results from the Chinese gasoline fuel market and the China 6 gasoline fuel standard limits.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
X