Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Visual System Analysis of High Speed On-Off Valve Based on Multi-Physics Simulation

2022-03-29
2022-01-0391
High speed on-off valves (HSVs) are widely used in advanced hydraulic braking actuators, including regenerative braking systems and active safety systems, which take crucial part in improving the energy efficiency and safety performance of vehicles. As a component involving multiple physical fields, the HSV is affected by the interaction of the fields-fluid, electromagnetic, and mechanical. Since the opening of the HSV is small and the flow speed is high, cavitation and vortex are inevitably brought out so that increase the valve’s noise and instability. However, it is costly and complex to observe the flow status by visual fluid experiments. Hence, in this article a visual multi-physics system simulation model of the HSV is explored, in which the flow field model of the HSV built by computational fluid dynamic (CFD) is co-simulated with the model of hydraulic actuator established by AMESim.
Technical Paper

The engaging process model of sleeve and teeth ring with a precise, continuous and nonlinear damping impact model in mechanical transmissions

2017-10-08
2017-01-2443
During the engaging process of sleeve and teeth ring in mechanical transmissions, their rotational speed and position differences cause multiple engaging ways and trajectories, and casual impacts between them will delay the engaging process and cause a long power off time for a gear shift. In order to reveal the engaging mechanism of the sleeve and the teeth ring, it is essential to build a high-fidelity model to cover all of their engaging ways and capture their speed changes for an impact. In this work, our contribution is that their impact process is modeled as a precise, continuous and nonlinear damping model, and then a hybrid automaton model is built to connect the system dynamics in different mechanical coupling relationships.
Technical Paper

The Review of Vehicle Purchase Restriction in China

2020-04-14
2020-01-0972
In the past two decades, rapidly expanding economy in China led to burst in travel demand and pursuit of quality of life. It further promoted the rapid growth of China's passenger car market. China had already become the largest vehicle sales country, exceeding the U.S. in 2010. By the end of 2018, there had been over 240 million cars in China, with over 200 million passenger cars. The surge of car ownership has also brought a series of problems, like traffic congestion, long commuting time, insufficient parking space, etc. Therefore, some local governments in China introduced vehicle purchase restriction policies to control the growth and gross of vehicle stock. Different cities issued different rules. Lottery and auction mechanisms both exist. There are also differences in classification and licensing of electric vehicles. However, with the recent slowdown of economic development, China's car sales began to decline in 2018, and the trend of 2019 is also not optimistic.
Technical Paper

Study of the Injection Control Valve in a New Electronic Diesel Fuel System

1998-02-23
980813
At first, the dynamic electromagnetic characteristics of a pulsed solenoid valve is analyzed by experiments. The fast valve response is obtained by material modifications. Then, the intelligent solenoid driving method is discussed. The new techniques of the “active” PWM and the “d2i/dt2” detection are developed for feedback control of the solenoid holding current and the valve closure timing. Finally, the control and diagnosis method for the valve closure duration is investigated. A sensing mechanism utilizing momentary camshaft speed fluctuations of fuel injection pump is presented, which provides the basis for feedback control and diagnosis of the valve closure duration and diesel fuel injection process.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Structural Designs for Electric Vehicle Battery Pack against Ground Impact

2018-04-03
2018-01-1438
Ground impact caused by road debris can result in very severe fire accident of Electric Vehicles (EV). In order to study the ground impact accidents, a Finite Element model of the battery pack structure is carefully set up according to the practical designs of EVs. Based on this model, the sequence of the deformation process is studied, and the contribution of each component is clarified. Subsequently, four designs, including three enhanced shield plates and one enhanced housing box, are investigated. Results show that the BRAS (Blast Resistant Adaptive Sandwich) shield plate is the most effective structure to decrease the deformation of the battery cells. Compared with the baseline case, which adopts a 6.35-mm-thick aluminum sheet as the shield plate, the BRAS can reduce the shortening of cells by more than 50%. Another type of sandwich structure, the NavTruss, can also improve the safety of battery pack, but not as effectively as the BRAS.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

Safety Comparison of Geometric Configurations of Electric Vehicle Battery under Side Pole Impact

2022-03-29
2022-01-0265
Batteries have various sizes and can be configured into different layouts in battery pack on electric vehicles. Crash safety performance is one of the key requirements in choosing battery geometric characteristics and designing layout of battery cells in battery pack. In this study, we compared impact responses of different configurations and geometric characteristics of battery cells under side pole impact. The side pole impact is a relatively dangerous collision type for electric vehicles, often causing large deformation and damage to the battery. Using a production battery pack, we first conducted side pole impact tests with sled tester, and then simulated the test configuration.
Technical Paper

Research on the Oscillation Reduction Control During High Voltage Battery Failure in Hybrid Electric Vehicles

2024-04-09
2024-01-2717
In order to achieve seamless mode switching control for hybrid electric vehicles (HEVs) in the event of battery failure, we propose a motor voltage-controlled mode switching method that eliminates power interruptions. This approach is based on an analysis of the dual-motor hybrid configuration's mode switching. We analyze the overall vehicle operation when the high-voltage battery occurs in different hybrid modes. To ensure that the vehicle can still function like a conventional car under such circumstances, we introduce a novel "voltage control" mode. In this mode, instead of operating in its traditional torque control manner, the P1 motor adopts a voltage control strategy. The P1 controller's variable becomes "voltage," and VCU sends the motor's working mode switching request and PCM finishes the mode transition. During system operation, the P1 motor promptly responds to these target voltages to maintain bus voltage within a normal range.
Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
Technical Paper

Research on Motor Control and Application in Dual Motor Hybrid System

2024-04-09
2024-01-2220
This paper analyzes the current control, mode control and boost strategy of permanent magnet synchronous motor in dual hybrid system, which has good stability and robustness. Current control includes current vector control, MTPA control, flux weakening control, PI current control and SVPWM control. Motor mode includes initialization mode, normal mode, fault mode, active discharge mode, power off mode, battery heating mode and boost mode. The boost strategy of the hybrid system is based on boost mode management, boost target voltage determination and boost PI control. The specific content is as follows: Boost mode control. Boost mode includes initial mode, normal mode, off mode and fault mode. Boost target voltage is determined. Boost converter is controlled by variable voltage, which depends on the operation status of the motor and generator..
Technical Paper

Research on Driving Range Estimation for Electric Vehicles Based on Corrected Battery Model

2015-04-14
2015-01-0250
In order to reduce driver's anxiety about range and energy, a direct and effective approach is to offer the remaining driving range based on the vehicle's states. Consequently, the estimation accuracy of the battery's remaining energy is very important. This paper introduces a experiment-based model for predicting the remaining energy, which considers many factors, such as current, temperature, difference between battery cells, and so on. This approach ensures the accuracy of the remaining driving range. Finally the method is validated through the environment space test. Validation results show that this method can offer exact remaining energy, which reduces the estimation error of the remaining range greatly.
Technical Paper

Research of the Primary Breakup of a Planar Liquid Sheet Produced by an Air-Blast Atomizer

2014-04-01
2014-01-1430
The primary breakup of a planar liquid sheet produced by an air-blast atomizer was studied through numerical simulations, in order to reveal physical mechanisms involved during this process. The reliability of simulations was verified by comparing the macroscopic parameters, e.g. breakup time and spatial growth rate, with experimental data. Shear instability and RT (Rayleigh-Taylor) instability were found to play important roles during the primary breakup. By analyzing the acceleration of a fluid parcel within liquid sheet using Discrete Particle Method, and measuring the wave length of transverse unstable wave, RT instability was found to be partially responsible for transverse instability. The predictions of LISA (Linearized Instability Sheet Atomization) model on breakup time were compared to experiments, and obvious differences were found to exist.
Technical Paper

Relative Impact of Chemical and Physical Properties of the Oil-Fuel Droplet on Pre-Ignition and Super-Knock in Turbocharged Gasoline Engines

2016-10-17
2016-01-2278
A conceptual approach to help understand and simulate droplet induced pre-ignition is presented. The complex phenomenon of oil-fuel droplet induced pre-ignition has been decomposed to its elementary processes. This approach helps identify the key fluid properties and engine parameters that affect the pre-ignition phenomenon, and could be used to control LSPI. Based on the conceptual model, a 3D CFD engine simulation has been developed which is able to realistically model all of the elementary processes involved in droplet induced pre-ignition. The simulation was successfully able to predict droplet induced pre-ignition at conditions where the phenomenon has been experimentally observed. The simulation has been able to help explain the observation of pre-ignition advancement relative to injection timing as experimentally observed in a previous study [6].
Journal Article

Refinements of the Dynamic Inversion Part of Hierarchical 4WIS/4WID Trajectory Tracking Controllers

2023-04-11
2023-01-0907
To tackle the over-actuated and highly nonlinear characteristics that four-wheel-independent-steering and four-wheel-independent -driving (4WIS/4WID) vehicles exhibit when tracking aggressive trajectory, a hierarchical controller with layers of computation-intensive modules is commonly adopted. The high-level linear motion controller commands the desired state derivatives of the vehicle to meet the overall trajectory tracking objectives. Then the system dynamic is inversed by the mid-level control allocation layer and the low-level wheel control layer to map the target state derivatives to steering angle and motor torque commands. However, this type of controller is difficult to implement on the embedded hardware onboard since the nonlinear dynamic inversion is typically solved by nonlinear programming.
Technical Paper

Recycling-Based Reduction of Energy Consumption and Carbon Emission of China’s Electric Vehicles: Overview and Policy Analysis

2018-04-03
2018-01-0659
Electric vehicles maintain the fastest development in China and undertake the responsibility of optimizing energy consumption and carbon emission in the transportation field. However, from the entire life cycle point of view, although electric vehicles have a certain degree of energy consumption and carbon emission reduction in the use phase, they cause extra energy consumption and carbon emission in the manufacturing phase, which weakens the due environmental benefits to some extent. The recycling of electric vehicles can effectively address the issue and indirectly reduce the energy consumption and carbon emission in the manufacturing phase. China is setting up the recycling system and strengthening regulation force to achieve proper energy consumption and carbon emission reduction benefits of electric vehicles. Under the current electric vehicle recycling technologies, China can reduce about 34% of carbon emission in electric vehicle manufacturing phase.
Technical Paper

Predicting the Battery Residual Usable Energy under Dynamic Conditions: a Novel Adaptive Method with Enhanced Performance

2015-03-10
2015-01-0054
Electric vehicle (EV) is a worldwide researching focus due to its environmental friendliness, but the inaccurate Remaining Driving Range (RDR) estimation hinders the EVs' popularity, and an accurate determination of the battery Residual Usable Energy (RUE) is the key factor to obtain a precise RDR value. A common RUE estimation method is based on State-of-Charge (SOC) estimation, in which the RUE is proportionally related to the current SOC. However, the battery voltage varies significantly under real-world conditions, and the traditional method results in certain estimation errors. An adaptive RUE prediction method (AEP) is introduced in this paper, in which the dynamic voltage is predicted based on the future discharge profile and a battery model, while the RUE is then calculated by the predicted voltage and current sequences.
Technical Paper

Optimal Energy Management Strategy for Hybrid Electric Vehicles

2004-03-08
2004-01-0576
This paper presents a preliminary design and analysis of an optimal energy management and control system for a power-split hybrid electric vehicle (HEV) using hybrid dynamical control system theory and design tools. The hybrid dynamical system theory is applied to formulate HEV powertrain dynamical system in which the interactions of discrete and continuous dynamics are involved. The Sequential Quadratic Programming (SQP) method is applied to optimize power distribution. An improved dynamic programming method is employed to determine the optimal power distribution and the vehicle operating mode transitions.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

Motor Control during Gearshift Phase to Reduce the Oscillation in Dual Hybrid Vehicles

2024-04-09
2024-01-2639
This paper defines a control method for shift torque exchange stage and a torque distribution control method for speed regulation stage. In the torque exchange stage, the torque distribution problem of active and passive clutches considers the injection of sine curve for local correction, which can solve the fish belly problem of hydraulic response (i.e. the hydraulic response is slow at the beginning and the hydraulic response is fast at the end). In the speed regulation stage, the target speed gradient profile is determined according to different shift types. The determination of the target speed gradient profile integrates different driving modes, throttle, P2 energy and clutch temperature.
X