Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Tire Force Fast Estimation Method for Vehicle Dynamics Stability Real Time Control

2007-10-30
2007-01-4244
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper

The 3-Dimensional Modal Parameter Tire Model and Simulation of Tire Rolling Over Oblique Cleats

2008-04-14
2008-01-1408
Based on the simulation results of tire rolling over perpendicular cleats by MPTM model, in present paper, a series of simulation results of tire rolling over oblique cleats with different angles are given. For that, the Modal Parameter Tire Camber property Model is established. For the appraisement of comparison between simulation and experimental results a problem concern the validation test is pointed out. In the end, simulation results of tire rolling over a series of continuous cleats are given.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Technical Paper

Influence of Mass Distribution of Battery and Occupant on Crash Response of Small Lightweight Electric Vehicle

2015-04-14
2015-01-0575
Small lightweight electric vehicle (SLEV) is an approach for compensating low energy density of the current battery. However, small lightweight vehicle presents technical challenges to crash safety design. One issue is that mass of battery pack and occupants is a significant portion of vehicle's total weight, and therefore, the mass distribution has great influence on crash response. This paper presents a parametric analysis using finite element modeling. We first build LS-DYNA model of a two-seater SLEV with curb weight of 600 kg. The model has no complex components and can provide reasonable crash pulses under full frontal rigid barrier crash loading and offset deformable barrier (ODB) crash loading. For given mass of battery pack and one occupant (the driver), different battery layouts, representing different combinations of center of gravity and moment of inertia of the whole vehicle, are analyzed for their influences on the crash responses under the two frontal crash loadings.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

Control System Development for the Diesel APU in Off-Road Hybrid Electric Vehicle

2007-10-30
2007-01-4209
This paper developed a control system for the auxiliary power unit (APU) in off-road series hybrid electric special vehicle. A control system configuration was designed according to the requirements of the high voltage system in series hybrid electric special vehicle. Then optimal engine operating areas were defined. A gain scheduling engine speed PI controller was designed based on these areas. A closed loop voltage regulator was designed for the synchronous generator. The proposed control system was first validated on an APU control test bench. The test results showed the control system guaranteed the diesel APU good dynamic response characteristics while remaining stable output voltage. Finally, the APU control system was implemented on a diesel APU in an off-road series hybrid electric vehicle and a road test was conducted. The road test results showed the APU control system promised good performance in both vehicle dynamics and vehicle high voltage system.
Technical Paper

Attitude Control of the Vehicle with Six In-Wheel Drive and Adaptive Hydro Pneumatic Suspensions

2019-04-02
2019-01-0456
The ability of actively adjusting attitude provides a great advantage for those vehicles used in special environments such as off-road environment with extreme terrains and obstacles. It can improve vehicles’ stability and performance. This paper proposes an attitude control system for realizing the active attitude adjustment and vehicle motion control in the same time. The study is based on a vehicle with six wheel independent drive and six independent suspensions (6WIDIS), which is a kind of unmanned vehicle with six in-wheel drives and six independent hydro pneumatic suspensions. With the hydro- pneumatic suspensions, the vehicle’s attitude can be actively adjusted. This paper develops a centralized- distributed control strategy with attitude information obtained by multi-sensor fusion, which can coordinate the complex relationship among the six wheels and suspensions. The attitude control system consists of three parts.
Journal Article

Assessment of Ride Comfort and Braking Performance Using Energy-Harvesting Shock Absorber

2015-04-14
2015-01-0649
Conventional viscous shock absorbers, in parallel with suspension springs, passively dissipate the excitation energy from road irregularity into heat waste, to reduce the transferred vibration which causes the discomfort of passengers. Energy-harvesting shock absorbers, which have the potential of conversion of kinetic energy into electric power, have been proposed as semi-active suspension to achieve better balance between the energy consumption and suspension performance. Because of the high energy density of the rotary shock absorber, a rotational energy-harvesting shock absorber with mechanical motion rectifier (MMR) is used in this paper. This paper presents the assessment of vehicle dynamic performance with the proposed energy-harvesting shock absorber in braking process. Moreover, a PI controller is proposed to attenuate the negative effect due to the pitch motion.
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

A Novel Three Steps Composited Parameter Matching Method of an Electromagnetic Regenerative Suspension System

2019-04-02
2019-01-0173
The electromagnetic regenerative suspension has attracted much attention recently due to its potential to improve ride comfort and handling stability, at the same time recover kinetic energy which is typically dissipated in traditional shock absorbers. The key components of a ball-screw regenerative suspension system are a motor, a ball screw and a nut. For this kind of regenerative suspension, its damping character is determined by the motor's torque-speed capacity, which is different from the damping character of the traditional shock absorber. Therefore, it is necessary to establish a systematic approach for the parameter matching of ball-screw regenerative suspension, so that the damping character provided by it can ensure ride comfort and handling stability. In this paper, a 2-DOF quarter vehicle simulation model with regenerative suspension is constructed. The effects of the inertia force on ride comfort and handling stability are analyzed.
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
X