Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Visualization of Partially Premixed Combustion of Gasoline-like Fuel Using High Speed Imaging in a Constant Volume Vessel

2012-04-16
2012-01-1236
Combustion visualizations were carried out in a constant volume vessel to study the partially premixed combustion of a gasoline-like fuel using high speed imaging. The test fuel (G80H20) is composed by volume 80% commercial gasoline and 20% n-heptane. The effects of ambient gas composition, ambient temperature and injection pressure on G80H20 combustion characteristics were analyzed. Meanwhile, a comparison of the EGR effect on combustion process between G80H20 and diesel was made. Four ambient gas conditions that represent the in-cylinder gas compositions of a heavy-duty diesel engine with EGR ratios of 0%, 20%, 40% and 60% were used to simulate EGR conditions. Variables also include two ambient temperature (910K and 870K) and two injection pressure (20 MPa and 50 MPa) conditions.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

The engaging process model of sleeve and teeth ring with a precise, continuous and nonlinear damping impact model in mechanical transmissions

2017-10-08
2017-01-2443
During the engaging process of sleeve and teeth ring in mechanical transmissions, their rotational speed and position differences cause multiple engaging ways and trajectories, and casual impacts between them will delay the engaging process and cause a long power off time for a gear shift. In order to reveal the engaging mechanism of the sleeve and the teeth ring, it is essential to build a high-fidelity model to cover all of their engaging ways and capture their speed changes for an impact. In this work, our contribution is that their impact process is modeled as a precise, continuous and nonlinear damping model, and then a hybrid automaton model is built to connect the system dynamics in different mechanical coupling relationships.
Technical Paper

The Review of Present and Future Energy Structure in China

2019-04-02
2019-01-0612
Both the economy and energy demand increase rapidly in China. The government is facing severe problems from energy security, carbon emissions and environmental issues. The past trends and future plans of energy will have great influence on the transportation, construction and industry development. This paper summarizes the present and future energy structure in China. Conventional fossil energy, nuclear energy and renewable energy are all included. Electricity will account for more proportion in total energy consumption in the future, and the structure of electricity will be cleaner. That will promote the development of electric vehicles and the transformation of China’s automotive industry. The optimization of energy structure will accelerate the low-carbon development in China. China’s energy development will enter a new stage from the expansion of total quantity to the upgrading of quality and efficiency.
Technical Paper

The Impact of Injector Deposits on Spray and Particulate Emission of Advanced Gasoline Direct Injection Vehicle

2016-10-17
2016-01-2284
Gasoline Direct Injection (GDI) engines have developed rapidly in recent years driven by fuel efficiency and consumption requirements, but face challenges such as injector deposits and particulate emissions compared to Port Fuel Injection (PFI) engines. While the mechanisms of GDI injector deposits formation and that of particulate emissions have been respectively revealed well, the impact of GDI injector deposits and their relation to particulate emissions have not yet been understood very well through systematic approach to investigate vehicle emissions together with injector spray analysis. In this paper, an experimental study was conducted on a GDI vehicle produced by a Chinese Original Equipment Manufacturer (OEM) and an optical spray test bench to determine the impact of injector deposits on spray and particulate emissions.
Technical Paper

The Impact of GDI Injector Deposits on Engine Combustion and Emission

2017-10-08
2017-01-2248
Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
Journal Article

The Fixed Points on the Nonlinear Dynamic Properties and the Parameters Identification Method for Hydraulic Engine Mount

2008-04-01
2008-01-2763
Based on the third generation of hydraulic engine mounts (HEMs), which has three types of hydraulic mechanisms such as inertia track, decoupler and disturbing plate, the influences of the three different hydraulic mechanisms on the dynamic properties were studied experimentally. The working principles of the three hydraulic mechanisms and the relationship between the dynamic properties of the three generations of HEMs were revealed clearly, these experimental results will be helpful for HEM design selection. It was discovered experimentally that the frequency-dependent dynamic properties of HEM with inertia track or orifice have fixed points under different excitation displacement amplitudes. Based on the facts that the analytical results matched well with the experimental ones, a new parameter-identification-method for HEM is presented, which is clear in theory and is time- and cost-saving, the identified results were reliable.
Technical Paper

The Differential Braking Steering Control of Special Purpose Flat-Bed Electric Vehicle

2019-04-02
2019-01-0440
Special purpose flat-bed vehicle is commonly utilized to move heavily items such as containers in warehouse, port and other freight handling scene, the hydraulic steering system have be gradually replaced by electric ones. However, the cost of electric steering system is high for commercial activities. Thus, for some corporates, the differential braking steering strategy becomes an ideal alternative. The purpose of this paper is to present a steering control method for flat-bed electric vehicle based on differential braking system. There are two main components of the control method, steering while moving forward and pivot steering, and each of them was composed by upper layer and executive layer. To evaluate the practicability of the control methods, a 7-DOF flat-bed vehicle model was established in Simulink.
Technical Paper

Super-Twisting Second-Order Sliding Mode Control for Automated Drifting of Distributed Electric Vehicles

2020-04-14
2020-01-0209
Studying drifting dynamics and control could extend the usable state-space beyond handling limits and maximize the potential safety benefits of autonomous vehicles. Distributed electric vehicles provide more possibilities for drifting control with better grip and larger maximum drift angle. Under the state of drifting, the distributed electric vehicle is a typical nonlinear over-actuated system with actuator redundancy, and the coupling of input vectors impedes the direct use of control algorithm of upper. This paper proposes a novel automated drifting controller for the distributed electric vehicle. First, the nonlinear over-actuated system, comprised of driving system, braking system and steering system, is formulated and transformed to a square system through proposed integrative recombination method of control channel, making general nonlinear control algorithms suitable for this system.
Technical Paper

Study on Modeling Method for Common Rail Diesel Engine Calibration and Optimization

2004-03-08
2004-01-0426
The large amount of controllable fuel injection parameters of Diesel engine equipped with high pressure common-rail fuel injection system makes the control of combustion more flexible, and also makes the workload of calibration and optimization much heavier. For higher efficiency, model-based approaches are presented and researched. This contribution presents a new method for modeling which is constituted by Neural Network and Adaptive Network-based Fussy Inference System (ANFIS). The experiment is carried out on a 6-cylinder common rail diesel engine. The analysis and experiment show that effective modeling can be achieved using this method.
Technical Paper

Study on Engine Start Vibration Index in a Hybrid Powertrain Using Torque Sensor and Cylinder Pressure Sensor

2019-11-04
2019-01-5034
This paper presents an investigation of drivability issue of engine start-stop. Hybrid vehicles provide excellent benefits regarding fuel efficiency and emission. However, vibration results from constant engine start and stop events generate drivability issues, thus compromising driving comfort. This paper has designed a high speed torque sensor to capture instantaneous torque at the engine shaft. Its consequences help to find out the most suitable index of vibration severity. This paper is organized in four sections. The first section introduces the powertrain to be studied. The second section introduces development of a specially designed torque sensor. The torque sensor is installed between the engine and ISG (Integrated Starter Generator), alongside with an encoder. The torque sensor is utilized to collect the instantaneous shaft torque on occasion of engine start. In the third section, this paper has performed two experiments.
Technical Paper

Study on Cavitation Effect of Hydraulic Retarder

2022-09-19
2022-01-1169
Hydraulic retarder is important auxiliary brake device which widely used in commercial vehicles for its economy, safety and driving comfort, however cavitation will occur and reduce the braking performance when hydraulic retarder operates at high speed. In this paper, a model of hydraulic retarder considering cavitation effect was established, and the reliability of the model was verified by comparing with the external characteristics of the product which was obtained from Voith’s official discloses data. Then the cavitation of hydraulic retarder under high-speed working condition was studied by the establishing simulation model. The simulation model can describe and analyze the internal flow field in the hydraulic retarder, and can be used as an important tool for the development and optimization of hydraulic retarder in the future. When hydraulic retarder’s rotational speed is about 1500rpm, the cavitation will be observed in the working chamber.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Structural Designs for Electric Vehicle Battery Pack against Ground Impact

2018-04-03
2018-01-1438
Ground impact caused by road debris can result in very severe fire accident of Electric Vehicles (EV). In order to study the ground impact accidents, a Finite Element model of the battery pack structure is carefully set up according to the practical designs of EVs. Based on this model, the sequence of the deformation process is studied, and the contribution of each component is clarified. Subsequently, four designs, including three enhanced shield plates and one enhanced housing box, are investigated. Results show that the BRAS (Blast Resistant Adaptive Sandwich) shield plate is the most effective structure to decrease the deformation of the battery cells. Compared with the baseline case, which adopts a 6.35-mm-thick aluminum sheet as the shield plate, the BRAS can reduce the shortening of cells by more than 50%. Another type of sandwich structure, the NavTruss, can also improve the safety of battery pack, but not as effectively as the BRAS.
Technical Paper

Smart Cockpit Development Trend and Smartphone-Head Unit Relationship

2022-01-31
2022-01-7004
Smart vehicles have become an important development direction of the transformation and upgrading of the automotive industry. Highly intelligent smart vehicles can free human drivers from driving tasks, endowing cars with the mobility and instrument properties. Smart cockpits integrate the media for interactions between humans and environments inside and outside cars. This paper has explored the components of smart cockpits, sorted out three development stages of smart cockpits from such three dimensions as man, car and environment, analyzed the characteristics of the second development stage (Stage 2.0), and illustrated the necessity of the competition between smartphones and head units at the second stage. Based on the comparison of merits and demerits between smartphones and head units, this paper has proposed three principles for an ideal division of duties of smartphones and head units.
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

Simulation Investigation of Turbulent Jet Ignition (TJI) Combustion in a Dedicated Hybrid Engine under Stoichiometric Condition

2024-04-09
2024-01-2111
Turbulent jet ignition (TJI) combustion using pre-chamber ignition can accelerate the combustion speed in the cylinder and has garnered growing interest in recent years. However, it is complicated for the optimization of the pre-chamber structure and combustion system. This study investigated the effects of the pre-chamber structure and the intake ports on the combustion characteristics of a gasoline engine through CFD simulation. Spark ignition (SI) combustion simulation was also conducted for comparison. The results showed that the design of the pre-chamber that causes the jet flame colliding with walls severely worsen the combustion, increasing the knocking intendency, and decrease the thermal efficiency. Compared with SI combustion mode, the TJI combustion mode has the higher heat transfer loss and lower unburned loss. The well-optimized pre-chamber can accelerate the flame propagation with knock suppression.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

2020-04-14
2020-01-0085
Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.
Technical Paper

Safety Comparison of Geometric Configurations of Electric Vehicle Battery under Side Pole Impact

2022-03-29
2022-01-0265
Batteries have various sizes and can be configured into different layouts in battery pack on electric vehicles. Crash safety performance is one of the key requirements in choosing battery geometric characteristics and designing layout of battery cells in battery pack. In this study, we compared impact responses of different configurations and geometric characteristics of battery cells under side pole impact. The side pole impact is a relatively dangerous collision type for electric vehicles, often causing large deformation and damage to the battery. Using a production battery pack, we first conducted side pole impact tests with sled tester, and then simulated the test configuration.
X