Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Well-to-Wheel Energy Use and Greenhouse Gas Emissions for Various Vehicle Technologies

2001-03-05
2001-01-1343
The well-to-wheel greenhouse gas (GHG) emissions and energy use of selected alternative vehicles are compared to those of a conventional gasoline vehicle. The vehicle technologies investigated are internal combustion engine, hybrid and fuel cell technology. The fuels are assumed to be produced from either crude oil or natural gas. Wherever possible real data has been used. The study shows that hybrid vehicles emit a similar amount of greenhouse gas as fuel cell vehicles. The diesel hybrid uses the least primary energy. The least greenhouse gas emissions are produced by natural gas and hydrogen hybrid and fuel cell vehicles.
Journal Article

Visualization of Partially Premixed Combustion of Gasoline-like Fuel Using High Speed Imaging in a Constant Volume Vessel

2012-04-16
2012-01-1236
Combustion visualizations were carried out in a constant volume vessel to study the partially premixed combustion of a gasoline-like fuel using high speed imaging. The test fuel (G80H20) is composed by volume 80% commercial gasoline and 20% n-heptane. The effects of ambient gas composition, ambient temperature and injection pressure on G80H20 combustion characteristics were analyzed. Meanwhile, a comparison of the EGR effect on combustion process between G80H20 and diesel was made. Four ambient gas conditions that represent the in-cylinder gas compositions of a heavy-duty diesel engine with EGR ratios of 0%, 20%, 40% and 60% were used to simulate EGR conditions. Variables also include two ambient temperature (910K and 870K) and two injection pressure (20 MPa and 50 MPa) conditions.
Technical Paper

Visual System Analysis of High Speed On-Off Valve Based on Multi-Physics Simulation

2022-03-29
2022-01-0391
High speed on-off valves (HSVs) are widely used in advanced hydraulic braking actuators, including regenerative braking systems and active safety systems, which take crucial part in improving the energy efficiency and safety performance of vehicles. As a component involving multiple physical fields, the HSV is affected by the interaction of the fields-fluid, electromagnetic, and mechanical. Since the opening of the HSV is small and the flow speed is high, cavitation and vortex are inevitably brought out so that increase the valve’s noise and instability. However, it is costly and complex to observe the flow status by visual fluid experiments. Hence, in this article a visual multi-physics system simulation model of the HSV is explored, in which the flow field model of the HSV built by computational fluid dynamic (CFD) is co-simulated with the model of hydraulic actuator established by AMESim.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

Using Analysis of the Ring Pack and Piston to Optimize Oil Consumption of Current and Future Engines

2023-10-31
2023-01-1603
Engine manufacturers are increasingly concerned about oil consumption due to its implications for operating costs, emissions, and durability in both diesel and natural gas-powered engines. As future engines aim for low or near-zero emissions while utilizing low/zero carbon fuels, lubricant oil consumption will play a critical role in achieving decarbonization and emissions targets. Hydrogen-fuelled engines, in particular, will be more vulnerable to oil droplet and oil ash-based pre-ignition. Traditionally, the influence of key design parameters on oil consumption has been determined during the validation phase of an engine development program, which entails extensive testbed hours and time-consuming hardware iterations. As a result, development programs may be unable to optimize oil consumption due to cost and time constraints.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

The development of warm-up control strategies for a methanol reformer fuel cell vehicle

2000-06-12
2000-05-0330
A fuel-cell-powered vehicle requires a plentiful supply of hydrogen to achieve good performance. This can be produced from methanol via an on-board reformer and gas clean-up unit. Since the reformer can take several minutes to reach its operating temperature, it is initially necessary to provide an alternative power source, such as a battery or ultra-capacitor, in order to drive the vehicle. This paper describes the use of a fuel cell vehicle simulation to predict behavior over a drive cycle from a cold start and to evaluate different warm-up control strategies in terms of performance and fuel efficiency.
Technical Paper

The Volumetric Efficiency of Direct and Port Injection Gasoline Engines with Different Fuels

2002-03-04
2002-01-0839
A study has been undertaken with a single-cylinder engine, based on the Mitsubishi GDi combustion system, that has the option of either port injection or direct injection. Tests have been undertaken with pure fuel components (methane, iso-octane, toluene and methanol), and a representative gasoline that has also been tested with the addition of 10% methanol and 10% ethanol. The volumetric efficiency depends both on the fuel and its time and place of injection. For stoichiometric operation with unleaded gasoline, changing from port injection to direct injection led to a 9% increase in volumetric efficiency, which was improved by a further 3% when 10% methanol was blended with the gasoline. The improvements in volumetric efficiency will be used to quantify the extent of charge cooling by fuel evaporation, and these will be compared with predictions assuming the maximum possible level of fuel evaporation.
Technical Paper

The Review of Present and Future Energy Structure in China

2019-04-02
2019-01-0612
Both the economy and energy demand increase rapidly in China. The government is facing severe problems from energy security, carbon emissions and environmental issues. The past trends and future plans of energy will have great influence on the transportation, construction and industry development. This paper summarizes the present and future energy structure in China. Conventional fossil energy, nuclear energy and renewable energy are all included. Electricity will account for more proportion in total energy consumption in the future, and the structure of electricity will be cleaner. That will promote the development of electric vehicles and the transformation of China’s automotive industry. The optimization of energy structure will accelerate the low-carbon development in China. China’s energy development will enter a new stage from the expansion of total quantity to the upgrading of quality and efficiency.
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

2008-10-06
2008-01-2471
An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

The Molecular Basis of the Rheological Behaviour of Lubricants

1999-10-25
1999-01-3611
The design of effective traction fluids and lubricants is facilitated by an understanding of how molecular structure within a fluid affects the behaviour of that fluid in-situ. Non-equilibrium molecular dynamics simulation has been used to analyse how molecules of different structures behave in a fluid and to determine the influence of these separate behaviours on the different rheological properties of the fluids.
Technical Paper

The Influence of Injector Parameters on the Formation and Break-Up of a Diesel Spray

2001-03-05
2001-01-0529
The influences of injector nozzle geometry, injection pressure and ambient air conditions on a diesel fuel spray were examined using back-lighting techniques. Both stills and high speed imaging techniques were used. Operating conditions representative of a modern turbocharged aftercooled HSDI diesel engine were achieved in an optical rapid compression machine fitted with a common rail fuel injector. Qualitative differences in spray structure were observed between tests performed with short and long injection periods. Changes in the flow structure within the nozzle could be the source of this effect. The temporal liquid penetration lengths were derived from the high-speed images. Comparisons were made between different nozzle geometries and different injection pressures. Differences were observed between VCO (Valve Covers Orifice) and mini-sac nozzles, with the mini-sac nozzles showing a higher rate of penetration under the same conditions.
Technical Paper

The Impact of Injector Deposits on Spray and Particulate Emission of Advanced Gasoline Direct Injection Vehicle

2016-10-17
2016-01-2284
Gasoline Direct Injection (GDI) engines have developed rapidly in recent years driven by fuel efficiency and consumption requirements, but face challenges such as injector deposits and particulate emissions compared to Port Fuel Injection (PFI) engines. While the mechanisms of GDI injector deposits formation and that of particulate emissions have been respectively revealed well, the impact of GDI injector deposits and their relation to particulate emissions have not yet been understood very well through systematic approach to investigate vehicle emissions together with injector spray analysis. In this paper, an experimental study was conducted on a GDI vehicle produced by a Chinese Original Equipment Manufacturer (OEM) and an optical spray test bench to determine the impact of injector deposits on spray and particulate emissions.
Technical Paper

The Impact of GDI Injector Deposits on Engine Combustion and Emission

2017-10-08
2017-01-2248
Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
Technical Paper

The Effects of Driveability on Emissions in European Gasoline Vehicles

2000-06-19
2000-01-1884
Fuel volatility and vehicle characteristics have long been recognised as important parameters influencing the exhaust emissions and the driveability of gasoline vehicles. Limits on volatility are specified in a number of world-wide / national fuel specifications and, in addition, many Oil Companies monitor driveability performance to ensure customer satisfaction. However, the relationship between driveability and exhaust emissions is relatively little explored. A study was carried out to simultaneously measure driveability and exhaust emissions in a fleet of 10 European gasoline vehicles. The vehicles were all equipped with three-way catalysts and single or multi-point fuel injection. The test procedure and driving cycle used were based on the European Cold Weather Driveability test method.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions

2011-08-30
2011-01-2130
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Technical Paper

Study on Engine Start Vibration Index in a Hybrid Powertrain Using Torque Sensor and Cylinder Pressure Sensor

2019-11-04
2019-01-5034
This paper presents an investigation of drivability issue of engine start-stop. Hybrid vehicles provide excellent benefits regarding fuel efficiency and emission. However, vibration results from constant engine start and stop events generate drivability issues, thus compromising driving comfort. This paper has designed a high speed torque sensor to capture instantaneous torque at the engine shaft. Its consequences help to find out the most suitable index of vibration severity. This paper is organized in four sections. The first section introduces the powertrain to be studied. The second section introduces development of a specially designed torque sensor. The torque sensor is installed between the engine and ISG (Integrated Starter Generator), alongside with an encoder. The torque sensor is utilized to collect the instantaneous shaft torque on occasion of engine start. In the third section, this paper has performed two experiments.
Technical Paper

Study of the Injection Control Valve in a New Electronic Diesel Fuel System

1998-02-23
980813
At first, the dynamic electromagnetic characteristics of a pulsed solenoid valve is analyzed by experiments. The fast valve response is obtained by material modifications. Then, the intelligent solenoid driving method is discussed. The new techniques of the “active” PWM and the “d2i/dt2” detection are developed for feedback control of the solenoid holding current and the valve closure timing. Finally, the control and diagnosis method for the valve closure duration is investigated. A sensing mechanism utilizing momentary camshaft speed fluctuations of fuel injection pump is presented, which provides the basis for feedback control and diagnosis of the valve closure duration and diesel fuel injection process.
X