Refine Your Search

Topic

Author

Search Results

Technical Paper

Transient Tire Properties

1974-02-01
740068
This paper identifies and analyzes steady-state and transient tire properties affecting vehicle directional response characteristics. The study is limited to the relationship between lateral force and slip angle. It shows fundamental differences between steady-state and transient properties. Tire transient properties are described by a force-slip angle loop with cornering stiffness and dynamic lateral force offset as parameters. Cornering stiffness is presented as a variable that changes with speed and steer rate. An interrelationship between cornering stiffness and dynamic lateral force offset resulting from the time lag between lateral force and slip angle is shown. Ramp steer techniques for measuring transient tire properties on a road trailer and on an external drum machine are described. A need for transient tire data for computer simulations of vehicle transient steer maneuvers is shown.
Technical Paper

The Vehicle Handling Model - A Symbolically Generated Vehicle Simulation Program Employing an Object-Oriented GUI

1992-06-01
921064
The Vehicle Handling Model (VHM) is representative of a new type of vehicle dynamics programs which can be easily used on a personal computer by vehicle development engineers. It consists of a simulation kernel which solves the vehicle equations of motion and a hypertext GUI which controls the model data input, execution, and post processing. The vehicle model has 5 DOF, including the vehicle lateral, vertical, yaw, pitch, and roll motions. The simulation also includes suspension compliance, a simple non-linear tire model, a wind gust model and a human driver model to provide realistic vehicle and steering inputs. The simulation program was generated by AUTOSIM which uses a high level description of the system to generate Fortran source code. The GUI allows an engineer to setup the model, run the analysis, and display the results with just a few clicks of the mouse.
Technical Paper

The Ford Driving Simulator

1994-03-01
940176
This paper describes the design and development of the Ford Driving Simulator. The simulator is a fixed-base device which provides real-time, interactive feedback to the driver through a combination of visual, auditory and tactile cues. The system is comprised of a modular buck, 150° field-of-view visual scene, a steering torque controller, high fidelity dynamics models, and an interactive experimenters station. Data acquisition systems have been developed to capture a broad spectrum of driver performance metrics.
Technical Paper

The Evolution of the Automobile Antenna in the United States and Europe — A Historic Retrospective — Part Two — The Last Fifty Years

1988-02-01
880085
The evolution and development of the automobile radio antenna is perhaps one of the most neglected success stories in the automotive industry. Born in the twilight of the last century, it evolved from a simple wire wrapped around a tree branch, to the current heated rear screen or backlite antenna. Part One (SAE No. 870090) described seven types of antennas in detail, covering the period 1897-1937. It was shown how the early radio engineers, struggling to develop a viable car antenna, had displayed a great degree of creativity and flexibility, from the “firecracker” experiments of Guglielmo Marconi in 1897, to the ingenious systems developed to overcome the problems created by the all-metal Turret-Top vehicles introduced by General Motors in 1934. In those pioneering days, the United States public was having a love affair with both the automobile and radio broadcasting, so it was no surprise that their marriage did not take long to arrive.
Technical Paper

The Estimation of SEAT Values from Transmissibility Data

2001-03-05
2001-01-0392
Seat Effective Amplitude Transmissibility (SEAT) values can be obtained from direct measurements at seat track and top or estimated from transmissibility data and seat track input. Vertical transmissibility was measured for sixteen seats and six subjects on the Ford Vehicle Vibration Simulator, and these 96 functions used to estimate the seat top response for rough road input. SEAT values were calculated, and good correlation to values computed from direct seat top measurements obtained (R2 of 0.86). Averaging transmissibilities and direct seat measurements over the 6 subjects to obtain correlations for the 16 seats improved R2 to 0.94, validating this approach.
Technical Paper

System Simulation and Analysis of EPA 5-Cycle Fuel Economy for Powersplit Hybrid Electric Vehicles

2013-04-08
2013-01-1456
To better reflect real world driving conditions, the EPA 5-Cycle Fuel Economy method encompasses high vehicle speeds, aggressive vehicle accelerations, climate control system use and cold temperature conditions in addition to the previously used standard City and Highway drive cycles in the estimation of vehicle fuel economy. A standard Powersplit Hybrid Electric Vehicle (HEV) system simulation environment has long been established and widely used within Ford to project fuel economy for the standard EPA City and Highway cycles. Direct modeling and simulation of the complete 5-Cycle fuel economy test set for HEV's presents significant new challenges especially with respect to modeling vehicle thermal management system and interactions with HEV features and system controls. It also requires a structured, systematic approach to validate the key elements of the system models and complete vehicle system simulations.
Technical Paper

Starter/Alternator Design for Optimized Hybrid Fuel Economy

2000-11-01
2000-01-C061
A Starter/Alternator (S/A) has been developed at Ford Research laboratories for hybrid electric vehicle applications. During development, the vehicle concept of operation and the system performance requirements were used to select the proper technology. The specification development, component selection and subsystem operation process is described. Subsystem performance and vehicle fuel economy are compared and evaluated using hybrid vehicle simulation analysis. These results can be used to identify potential subsystem modifications and alternative vehicle control strategies.
Technical Paper

Sound Package Development for Lightweight Vehicle Design using Statistical Energy Analysis (SEA)

2015-06-15
2015-01-2302
Lightweighting of vehicle panels enclosing vehicle cabin causes NVH degradation since engine, road, and wind noise acoustic sources propagate to the vehicle interior through these panels. In order to reduce this NVH degradation, there is a need to develop new NVH sound package materials and designs for use in lightweight vehicle design. Statistical Energy Analysis (SEA) model can be an effective CAE design tool to develop NVH sound packages for use in lightweight vehicle design. Using SEA can help engineers recover the NVH deficiency created due to sheet metal lightweighting actions. Full vehicle SEA model was developed to evaluate the high frequency NVH performance of “Vehicle A” in the frequency range from 200 Hz to 10 kHz. This correlated SEA model was used for the vehicle sound package optimization studies. Full vehicle level NVH laboratory tests for engine and tire patch noise reduction were also conducted to demonstrate the performance of sound package designs on “Vehicle A”.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Technical Paper

Signal Processing for Shift Feel Simulation on the Ford Vehicle Vibration Simulator

1997-05-20
972030
Subjective assessment of shift feel for automatic transmissions is facilitated by simulation on the Ford Vehicle Vibration Simulator, allowing application of advanced psycho-physical methods. Large accelerations present in data in addition to the shift event may generate displacements too large to simulate. Isolation of the shift signal in time and frequency poses unique challenges due to the very low frequencies (VLF) involved. A method involving filtering, windowing, and filtering again solves this problem. The isolation of the 1-2 shift from a wide-open-throttle runup is illustrated. The method is applicable in general to separating VLF signals in time and frequency.
Technical Paper

Rail Transit Simulation

1981-02-01
810283
The design and construction of the rail transit simulator for the dynamic testing of automobiles, trucks and components is described. The test facility features seven servo-controlled hydraulic actuators, along with associated electronics to simulate vehicle environmental conditions during rail shipment. This ability to simulate the shipping environment in the laboratory has effectively reduced the cost and the time required to evaluate designs.
Technical Paper

Prediction of ASTM Sequence VI and VIA Fuel Economy Based on Laboratory Bench Tests

1996-05-01
961140
The estimation of fuel economy benefits gained through improved engine oils using ASTM test procedures is expensive and time consuming. This paper describes a methodology to predict ASTM Sequence VI and VIA fuel economy based on laboratory bench tests. High shear rate viscosities were measured using a tapered bearing simulator and boundary friction coefficients were measured using a Plint reciprocating machine at temperatures used in Sequence VI and VIA tests. Weighted viscosities and weighted friction coefficients were calculated from these measurements using weighting factors identical to those used in the Sequence tests. The measured Sequence VI and VIA fuel economy numbers were correlated with the weighted viscosities and weighted friction coefficients. An excellent correlation was observed between Sequence VIA fuel economy and weighted high shear rate viscosities and friction coefficients whereas a reasonable correlation was observed for Sequence VI fuel economy.
Technical Paper

Powersplit HEV Performance Simulation Capability

2014-04-01
2014-01-1813
A new performance simulation capability has been developed for powersplit HEVs to enable analytical assessment of new engine technologies in the context of HEV system operation and to analyze/understand important system dynamics and control interactions affecting HEV performance. This new capability allows direct simulation with closed-loop controls and the driver, is compatible with Ford standard HEV system simulation capabilities and enables simulation with multiple levels of model fidelity and feature content across the vehicle system. The combined plant Vehicle Model Architecture (VMA) in Simulink was used for the infrastructure. The simulation capability includes a Dymola model of the powersplit transaxle, a Vehicle System Control (VSC) model implemented in Simulink, a high fidelity 2L Atkinson GT-Power engine model, and a simplified representation of the engine controls in Simulink.
Technical Paper

Organizing the Engineer's Toolbox

1993-03-01
930836
QFD, FMEA, Process Improvement, Taguchi, Simultaneous Engineering, PDP, Project Management, DVP, DOE, …and the list goes on. Today's automotive product design engineers face a myriad of “tools” (methodologies, techniques, procedures) that are expected to be mastered and used in the course of performing their job. The list continually grows with new tools being added to the existing ones. And each new tool has an associated acronym to add to the confusion. New and inexperienced engineers are often confused by these tools being tossed at them …school did not cover all this ! The experienced engineer is often skeptical. After all, “if I have been a successful engineer for 20 years, why do I need to start doing these things now?” Nevertheless, most of these tools are truly needed by engineers today in order to be competitive in the increasingly complex and sophisticated world of automotive product design.
Technical Paper

Off Track - Frame and Suspension Tuning (FAST)

1994-12-01
942535
Through Frame and Suspension Tuning (FAST) you can identify suspension and frame Set-ups in the lab with out risk to the car or driver. For on track verification the number of Set-ups can be reduced from an unlimited number to 2 or 3 and then optimized on the track, rather than developed on the track. This method can be used with all forms of racing. It has been applied to Indy, GT, Winston Cup, and Trans Am cars. Through the use of a road simulator we are able to evaluate and improve the frame and suspension dynamics in a laboratory. This paper will focus on the first step in the tuning process, frame tuning. If the frame is not tuned for the input energy conditions it can become an uncontrolled suspension component. The first step is to identify the frame dynamic characteristics. Operational deform shapes are measured to identify local and global motion. The frames are modified to optimize the response for the type of race track.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Technical Paper

Interactive Computer Simulation of Drivetrain Dynamics

1985-05-15
850978
Computer simulations of vehicle dynamics can be a useful investigative tool in drive-ability and NVH studies. As the present work demonstrates, oscillations of the drive-train under steady-state and transient conditions are amenable to mathematical analysis, especially in the torsional mode. Simulations of such a system with a lock-up torque converter are shown with emphasis on tip-in response, transmissibility of engine firing pulsations and self-excited oscillations. In particular, the method of interactive simulation is shown to be an effective design-aid tool in the investigation of drivetrain vibrations.
Technical Paper

Improved Low-Emission Vehicle Simulator for Evaluation of Sampling and Analytical Systems

2002-03-04
2002-01-0049
The Vehicle Exhaust Emissions Simulator was developed to evaluate the performance of vehicle emissions sampling and analytical systems. The simulator produces a representative tailpipe volume flow rate containing up to five emission constituents, injected via mass flow controllers (MFCs). Eliminating the variability of test results associated with the vehicle, driver, and dynamometer makes the simulator an ideal quality control tool for use in commissioning new test cells, checking data correlation between test cells, and evaluating overall system performance. Earlier vehicle emissions simulators being used in the industry were primarily for checking Constant Volume Samplers (CVSs) and Bag Benches but they did not have the ability to properly simulate tailpipe volume.
Technical Paper

Idle Vibration Analysis and Evaluation Utilizing a Full-Vehicle NVH Simulator

2015-06-15
2015-01-2334
Realistically experiencing the sound and vibration data through actually listening to and feeling the data in a full-vehicle NVH simulator remarkably aids the understanding of the NVH phenomena and speeds up the decision-making process. In the case of idle vibration, the sound and vibration of the idle condition are perceived simultaneously, and both need to be accurately reproduced simultaneously in a simulated environment in order to be properly evaluated and understood. In this work, a case is examined in which a perceived idle quality of a vehicle is addressed. In this case, two very similar vehicles, with the same powertrain but somewhat different body structures, are compared. One has a lower subjective idle quality rating than the other, despite the vehicles being so similar.
Technical Paper

Fuel Economy - Contribution of the Rear Axle Lubricant

1977-02-01
770835
Axle dynamometer tests were carried out to evaluate the effects of rear axle lubricant viscosity-temperature behavior and frictional characteristics on vehicle fuel economy. Using a Ford 9 inch 2.75:1.0 ratio axle, a set of input speed and load conditions was selected to permit simulation of the CVS and EPA highway driving cycles. Lubricant temperature was varied from -30°C to 100°C to simulate seasonal climatic effects. Data obtained for three lubricants differing in viscosity-temperature behavior were interpreted assuming a lubrication model including both elastohydrodynamic and mixed lubrication conditions. From these data, fuel economy projections were made using a vehicle simulation computer program. The results predict that improvements in vehicle fuel economy on the order of a few percent can be made at low temperatures by use of low viscosity synthetic lubricants, but only small effects are projected for the CVS and EPA highway cycles.
X