Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

High Temperature Tribological Coatings for Advanced Military Diesel Engines

1997-02-24
970203
Experimental results focused towards developing tribological surface coatings coupled with liquid lubricant boundary layer effects, for advanced high temperature military diesel engine applications are presented. The primary focus of this work is in the area of advanced, low heat rejection (LHR) high output diesel engines, where high temperature boundary lubrication between the piston ring and the cylinder liner wall surface is critical for successful engine operation. The target temperature focused upon in our research is an operating top ring reversal (TRR) temperature of approximately 538°C. The technology advancement used for this application involves treating porous iron oxide/titanium oxide (Fe2O3/TiO2) and molybdenum (Mo) based composite thermal sprayed coatings with chemical binders to improve coating strength, integrity, and tribological properties. This process dramatically decreases open porosity to form an almost monolithic appearing coating at the surface1.
Technical Paper

Assessment of JP-8 and DF-2 Evaporation Rate and Cetane Number Differences on a Military Diesel Engine

2006-04-03
2006-01-1549
The U.S. Army utilizes both world wide available diesel fuel and jet fuel (JP-8) for ground mobility applications and must maintain such fuel flexibility in order to meet mission requirements. Understanding of combustion system sensitivity to JP-8 is not well documented for such vehicle applications and thus the current knowledge base on standard diesel spray combustion must be extrapolated in order to assess fuel effects on military combustion systems. In particular, the liquid length of developed, high pressure fuel sprays is a key combustion affecting parameter that is sensitive to fuel type, the fuel delivery system, and combustion chamber thermodynamic condition. This parameter provides targeting information that is employed for assessing bulk jet mixing, cylinder pressure rise (evaporation rate), jet-wall interaction, and the formation of nitrous oxide and particulate matter.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
X