Refine Your Search

Topic

Search Results

Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Technical Paper

Analysis of Technology Adoption Rates in New Vehicles

2014-04-01
2014-01-0781
This paper examines the pace at which manufacturers have added certain powertrain technology into new vehicles from model year 1975 to the present. Based on data from the EPA's Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends database [1], the analysis will focus on several key technologies that have either reached a high level of penetration in light duty vehicles, or whose use in the new vehicle fleet has been growing in recent years. The findings indicate that individual manufacturers have, at times, implemented new technology across major portions of their new vehicle offerings in only a few model years. This is an important clarification to prior EPA analysis that indicated much longer adoption times for the industry as a whole. This new analysis suggests a technology penetration paradigm where individual manufacturers have a much shorter technology penetration cycle than the overall industry, due to “sequencing” by individual manufacturers.
Technical Paper

Characterization of GHG Reduction Technologies in the Existing Fleet

2018-04-03
2018-01-1268
By almost any definition, technology has penetrated the U.S. light-duty vehicle fleet significantly in conjunction with the increased stringency of fuel economy and GHG emissions regulations. The physical presence of advanced technology components provides one indication of the efforts taken to reduce emissions, but that alone does not provide a complete measure of the benefits of a particular technology application. Differences in the design of components, the materials used, the presence of other technologies, and the calibration of controls can impact the performance of technologies in any particular implementation. The effectiveness of a technology for reducing emissions will also be influenced by the extent to which the technologies are applied towards changes in vehicle operating characteristics such as improved acceleration, or customer features that may offset mass reduction from the use of lightweight materials.
Technical Paper

Complex Systems Method Applied to Identify Carbon Dioxide Emission Reductions for Light-Duty Vehicles for the 2020-2025 Timeframe

2012-04-16
2012-01-0360
The U.S. Environmental Protection Agency, U.S. Department of Transportation's National Highway and Traffic Safety Administration, and the California Air Resources Board have recently released proposed new regulations for greenhouse gas emissions and fuel economy for light-duty vehicles and trucks in model years 2017-2025. These proposed regulations intend to significantly reduce greenhouse gas emissions and increase fleet fuel economy from current levels. At the fleet level, these rules the proposed regulations represent a 50% reduction in greenhouse gas emissions by new vehicles in 2025 compared to current fleet levels. At the same time, global growth, especially in developing economies, should continue to drive demand for crude oil and may lead to further fuel price increases. Both of these trends will therefore require light duty vehicles (LDV) to significantly improve their greenhouse gas emissions over the next 5-15 years to meet regulatory requirements and customer demand.
Technical Paper

Cost-Effectiveness of a Lightweight Design for 2017-2020: An Assessment of a Midsize Crossover Utility Vehicle

2013-04-08
2013-01-0656
In response to more stringent greenhouse gas and fuel economy standards and increasing consumer demand for fuel efficient vehicles, automobile manufacturers have identified vehicle mass reduction as a leading strategy for reducing greenhouse gas emissions and improving fuel economy. The potential for significant levels of mass reduction can only be understood using a full-vehicle analysis, partly because mass reduction in one vehicle system or part can enable additional reductions elsewhere. This paper describes a holistic approach in which the most cost-effective mass reduction ideas were selected using a structured optimization procedure, and the crash safety of the resultant design was evaluated using a full-vehicle engineering analysis.
Journal Article

Cycle-Average Heavy-Duty Engine Test Procedure for Full Vehicle Certification - Numerical Algorithms for Interpreting Cycle-Average Fuel Maps

2016-09-27
2016-01-8018
In June of 2015, the Environmental Protection Agency and the National Highway Traffic Safety Administration issued a Notice of Proposed Rulemaking to further reduce greenhouse gas emissions and improve the fuel efficiency of medium- and heavy-duty vehicles. The agencies proposed that vehicle manufacturers would certify vehicles to the standards by using the agencies’ Greenhouse Gas Emission Model (GEM). The agencies also proposed a steady-state engine test procedure for generating GEM inputs to represent the vehicle’s engine performance. In the proposal the agencies also requested comment on an alternative engine test procedure, the details of which were published in two separate 2015 SAE Technical Papers [1, 2]. As an alternative to the proposed steady-state engine test procedure, these papers presented a cycle-average test procedure.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Technical Paper

Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool

2013-04-08
2013-01-0808
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the greenhouse gas emissions and fuel efficiency of light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator that is capable of analyzing various vehicle types equipped with different powertrain technologies. The software is built on MATLAB/Simulink. This first version release of the simulation tool models conventional vehicles and is capable of evaluating effects of off-cycle technologies on greenhouse gas emissions, such as air conditioning, electrical load reduction, road load reduction by active aerodynamics, and engine start-stop. This paper introduces the simulation tool by describing its basic model architecture and presenting its underlying physics as well as model formulations. It describes the simulation capability along with its graphical user interface of the tool, designed for off-cycle technology analysis purposes.
Technical Paper

Downsized Boosted Engine Benchmarking and Results

2015-04-14
2015-01-1266
Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012-2025 are requiring vehicle powertrains to become much more efficient. One key technology strategy that vehicle manufacturers are using to help comply with GHG and FE standards is to replace naturally aspirated engines with smaller displacement “downsized” boosted engines. In order to understand and measure the effects of this technology, the Environmental Protection Agency (EPA) benchmarked a 2013 Ford Escape with an EcoBoost® 1.6L engine. This paper describes a “tethered” engine dyno benchmarking method used to develop a fuel efficiency map for the 1.6L EcoBoost® engine. The engine was mounted in a dyno test cell and tethered with a lengthened engine wire harness to a complete 2013 Ford Escape vehicle outside the test cell. This method allowed engine mapping with the stock ECU and calibrations.
Technical Paper

Effect of Driving Cycles on Emissions from On-Road Motorcycles

2020-04-14
2020-01-0377
Chassis dynamometer testing was conducted with three on-highway motorcycles produced for the North American market with engine displacements of 296 cc, 749 cc and 1198 cc to better inform criteria pollutant emissions inventories. The motorcycles were tested using US Tier 2 certification fuel over the Federal Test Procedure (FTP), World Motorcycle Test Cycle (WMTC) and a cycle based on a sample of real-world motorcycle driving, informally referred to as the ‘Real World Driving Cycle’ (RWDC). Emissions characterization includes composite, individual test phase and 1Hz cumulative results for various criteria pollutants for each test cycle. Overall, it was found that the higher peak speed rates and peak torque levels observed during the RWDC are more fully represented in the WMTC than the FTP. The use of the WMTC and RWDC cycles generally translated into higher emissions rates compared to the FTP and in particular for nitrogen oxides and carbon monoxide.
Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Technical Paper

Energy Management Options for an Electric Vehicle with Hydraulic Regeneration System

2011-04-12
2011-01-0868
Energy security and climate change challenges provide a strong impetus for investigating Electric Vehicle (EV) concepts. EVs link two major infrastructures, the transportation and the electric power grid. This provides a chance to bring other sources of energy into transportation, displace petroleum and, with the right mix of power generation sources, reduce CO₂ emissions. The main obstacles for introducing a large numbers of EVs are cost, battery weight, and vehicle range. Battery health is also a factor, both directly and indirectly, by introducing limits on depth of discharge. This paper considers a low-cost path for extending the range of a small urban EV by integrating a parallel hydraulic system for harvesting and reusing braking energy. The idea behind the concept is to avoid replacement of lead-acid or small Li-Ion batteries with a very expensive Li-Ion pack, and instead use a low-cost hydraulic system to achieve comparable range improvements.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

Evaluation of Coastdown Analysis Techniques to Determine Aerodynamic Drag of Heavy-Duty Vehicles

2016-09-27
2016-01-8151
To investigate the feasibility of various aerodynamic test procedures for the Phase 2 Greenhouse Gas (GHG) Regulations for heavy-duty vehicles in the United States, the US Environmental Protection Agency conducted, through Southwest Research Institute (SwRI), coastdown testing of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Three vehicle configurations were tested, two of which included common trailer drag-reduction technologies. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. One vehicle configuration was tested over several days to evaluate day-to-day repeatability and the influence of changing wind conditions. Data on external sources of road forces, such as grade and speed dependence of tire rolling resistance, were collected separately and incorporated into the analysis.
Technical Paper

Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

2018-04-03
2018-01-1423
Low-pressure loop exhaust gas recirculation (LP- EGR) combined with higher compression ratio, is a technology package that has been a focus of research to increase engine thermal efficiency of downsized, turbocharged gasoline direct injection (GDI) engines. Research shows that the addition of LP-EGR reduces the propensity to knock that is experienced at higher compression ratios [1]. To investigate the interaction and compatibility between increased compression ratio and LP-EGR, a 1.6 L Turbocharged GDI engine was modified to run with LP-EGR at a higher compression ratio (12:1 versus 10.5:1) via a piston change. This paper presents the results of the baseline testing on an engine run with a prototype controller and initially tuned to mimic an original equipment manufacturer (OEM) baseline control strategy running on premium fuel (92.8 anti-knock index).
Journal Article

Fleet-Level Modeling of Real World Factors Influencing Greenhouse Gas Emission Simulation in ALPHA

2017-03-28
2017-01-0899
The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
Technical Paper

Fuel Effects Study with In-Use Two-Stroke Motorcycles and All-Terrain-Vehicles

2013-10-14
2013-01-2518
This paper covers work performed for the California Air Resources Board and US Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on four in-use off-road two-stroke motorcycles and all-terrain vehicles utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Journal Article

Fuel-Savings from Aerodynamic Efficiency Improvements for Combination Tractor-Trailers Relative to Vehicle Speed

2016-09-27
2016-01-8133
Commercial, class-8 tractor-trailers were tested to develop a relationship between vehicle speed and fuel savings associated with trailer aerodynamic technologies representative of typical long-haul freight applications. This research seeks to address a concern that many long-distance U.S. freight companies hold that, as vehicle speed is reduced, the fuel savings benefits of aerodynamic technologies are not realized. In this paper, the reductions in fuel consumption were measured using the SAE J1231 test method and thru-engine fueling rates recorded from the vehicle’s electronic data stream. Constant speed testing was conducted on road at different speeds and corresponding testing was conducted on track to confirm results. Data was collected at four (4) vehicle speeds: 35, 45, 55, and 62 miles per hour. Two different trailer aerodynamic configurations were evaluated relative to a baseline tractor trailer.
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
Technical Paper

Modeling and Validation of Lithium-Ion Automotive Battery Packs

2013-04-08
2013-01-1539
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a freely-distributed, MATLAB/Simulink-based desktop application. Version 1.0 of the ALPHA tool was applicable only to conventional, non-hybrid vehicles and was used to evaluate off-cycle technology such as air-conditioning, electrical load reduction technology and road load reduction technologies for the 2017-2025 LD GHG and Fuel Economy rule. The next version of the ALPHA tool extends its modeling capabilities to include power-split and P2 parallel hybrid electric vehicles and their battery pack energy storage systems. Future versions of ALPHA will incorporate plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) architectures.
X