Refine Your Search

Topic

Author

Search Results

Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wavelet-Based Visualization of Impulsive and Transient Sounds in Stationary Background Noise

2001-04-30
2001-01-1475
Scalograms based on shift-invariant orthonormal wavelet transforms can be used to analyze impulsive and transient sounds in the presence of more stationary sound backgrounds, such as wind noise or drivetrain noise. The visual threshold of detection for impulsive features on the scalogram (signal energy content vs. time and frequency,) is shown to be similar to the audible threshold of detection of the human auditory system for the corresponding impulsive sounds. Two examples of impulsive sounds in a realistic automotive sound background are presented: automotive interior rattle in a vehicle passenger compartment, and spark knock recorded in an engine compartment.
Technical Paper

Variable Cam Timing (VCT) Knock Root Cause Analysis and Failure Mode Prevention

2019-01-18
2019-01-5003
Knock in the Camshaft Torque Actuated (CTA) in the Variable Cam Timing (VCT) engine can be a NVH issue and a source of customer complaint. The knock noise usually occurs during hot idle when the VCT phaser is in the locked position and the locking pin is engaged. During a V8 engine development at Ford, the VCT knock noise was observed during hot idle run. In this paper investigation leading to the identification of the root cause through both test and the CAE simulation is presented. The key knock contributors involving torque and its rate of change in addition to the backlash level are discussed. A CAE metric to assess knock occurrence potential for this NVH failure mode is presented. Finally a new design feature in terms of locking pinhole positioning to mitigate or eliminate the knock is discussed.
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

2019-04-02
2019-01-0974
Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Technical Paper

The Use of Low Viscosity Oils to Improve Fuel Economy in Light Duty Diesel Engines

2000-06-19
2000-01-2054
Historically, fuel cost conscious customers have tended to purchase diesel passenger cars. However, with increasing competition from alternative fuels and lean burn and direct injection gasoline fuelled engines, diesel engined vehicles currently face tough challenges from the point of fuel economy and emissions. In gasoline engines, low viscosity friction modified oils have demonstrated their potential for reducing internal engine friction and thus improving fuel economy, without adversely effecting engine durability. These fuel economy improvements have led to the introduction of such a low viscosity friction modified 5W-30 oil as the initial and service fill for the majority of Ford products sold in Europe. The trend towards even lower viscosities continues. To assess the potential benefits and issues of moving to 5W-20 in diesel engines, a short pilot study has been conducted using a Ford 1.8l direct injection diesel engine.
Technical Paper

The Effects of Injection Strategies on Particulate Emissions from a Dual-Injection Gasoline Engine

2019-01-15
2019-01-0055
European standards have set stringent PN (particle number) regulation (6×1011 #/km) for gasoline direct injection (GDI) engine, posing a great challenge for the particulate emission control of GDI engines. Dual-injection, which combines direct-injection (DI) with port-fuel-injection (PFI), is an effective approach to reduce particle emissions of GDI engine while maintaining good efficiency and power output. In order to investigate the PN emission characteristics under different dual-injection strategies, a DMS500 fast particle spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a dual-injection gasoline engine. In this study, the injection strategies include injection timing, injection ratio and injection pressure of direct-injection.
Journal Article

The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future

2017-03-28
2017-01-0918
In anticipation that future gasoline engines will have improved fuel efficiency and therefore lower exhaust temperatures during low load operation, a project was initiated in 2014 to develop three-way catalysts (TWC) with improved activity at lower temperatures while maintaining the durability of current TWCs. This project is a collaboration between Ford Motor Company, Oak Ridge National Laboratory, and the University of Michigan and is funded by the U.S. Department of Energy. The ultimate goal is to show progress towards the USDRIVE goal of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) at 150°C after high mileage aging. A reactor was set up at Ford to follow the catalyst testing protocols established by the USDRIVE ACEC tech team for evaluating catalysts for stoichiometric gasoline direct-injection (S-GDI) engines; this protocol specifies a stoichiometric blend of CO/H2, NO, C3H6, C2H4, C3H8, O2, H2O, and CO2 for the evaluations.
Technical Paper

Technology Assessment of Boosted Direct Injection Stratified Charge Gasoline Engines

2000-03-06
2000-01-0249
Direct injection stratified charge gasoline engines are becoming increasingly popular due to their potential for improved fuel economy and emissions. However, the benefits are restricted to low speed and load conditions due to the large air requirements during stratified operation. With boost, the air flow can be increased, extending the stratified operating regime and potentially the fuel economy and emissions benefits as well. This study assesses the feasibility of this technology using a variable geometry turbocharger and a supercharger as boost devices. The effect of boost on fuel economy, delivery of recirculated exhaust gas, and exhaust gas temperature are considered.
Journal Article

TWC+LNT/SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1006
A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
Technical Paper

Summary of Flow Metering Options for Injector Characterization

2009-04-20
2009-01-0664
A review was conducted of the various fuel injector flow rate measurement methods that are commercially available. The scope of the review was primarily focused on the gasoline applications of Port Fuel Injection (PFI) and Direct Injection Spark Ignition (DISI), but Diesel applications were reviewed as well. These flow meters were compared at the Powertrain & Fuel Subsystems Laboratory (PFSL) of Ford Motor Company. The purpose of this paper is to review the capabilities of each flow meter that is commercially available for use in injector characterization benches and engine test beds.
Technical Paper

Statistical Analysis of the Drivability Impacts with Ethanol

2014-09-30
2014-36-0437
This paper presents a study performed in 10 vehicles available in Brazilian market where the drivability with ethanol and gasoline, also referred as gasohol were compared. The motivation for this work came from the constant competition of the automotive industry, where engineers are searching for ways to improve the quality of the products aiming the “best in class” drivability with the best cost efficiency. For the Brazilian market, a further complexity is added to the development and verification process, which is the need to design and verify the controls and calibration considering the two fuels available in the market, the ethanol and the gasoline. In order to determine how the drivability is impacted by the ethanol, the paper presents a study where the drivability data were generated using the objective drivability measurement system AVL-DRIVE™.
Technical Paper

Sound Quality Metric Development and Application for Impulsive Engine Noise

2005-05-16
2005-01-2482
Many engine tick and knock issues are clearly audible, yet cannot be characterized by common sound quality metrics such as time-varying loudness, sharpness, fluctuation strength, or roughness. This paper summarizes the recent development and application of an objective metric that agrees with subjective impressions of impulsive engine noise. The metric is based on a general impulsive noise model [1], consisting of a psychoacoustic processing stage followed by a transient detection stage. The psychoacoustic stage is extracted from portions of a time-varying loudness model. The primary output of the impulsive engine noise model is a time series that indicates the location and “intensity” of impulsive engine noise events. The information in this time series is reduced either to a single number metric, or to a frequency-based vector of numbers that indicates the amount of impulsiveness in the recorded sound.
Journal Article

Selective Catalytic Reduction for Treating the NOx Emissions from Lean-Burn Gasoline Engines: Performance Assessment

2008-04-14
2008-01-0810
Selective catalytic reduction (SCR) with NH3 provides an attractive alternative to lean NOx traps for controlling the NOx emissions from lean-burn gasoline engines. This paper summarizes a laboratory study to assess the effects of temperature, space velocity, and the concentrations of NO, NH3, and O2 on the NOx conversion of an iron/zeolite SCR catalyst. A fresh sample was evaluated on slow temperature ramps with 5% O2 and 250, 500, or 1000 ppm of NO and NH3. The NOx conversion at low temperatures decreased with increasing NO and NH3 concentrations due to kinetic limitations. Conversely, the conversion at high temperatures increased with increasing NO and NH3 concentrations because the portion of NH3 oxidized by O2 decreased with increasing NO concentration.
Technical Paper

Safe Practices and Procedures for High Voltage and Hydrogen in Ford's H2RV

2004-03-08
2004-01-0059
In recent times, the development of alternate-fuel vehicles, including those fueled by hydrogen, has become relatively common. While there are potential safety related issues with any combustible fuel, these have been resolved over the last 100+ years. The comfort level with gasoline fuel has resulted from the widespread application of simple safety procedures followed at every stage of gasoline refinement and handling. It is important to have analogous procedures for handling hydrogen-fueled vehicles safely and with confidence. The characteristics of hydrogen, including: a) wide flammability range, b) very low ignition energy, c) odorless and difficult to detect, d) high diffusion rate, e) high buoyancy, f) invisible flame, etc., bolster the need for safe practices and procedures.
Technical Paper

Regeneration Strategies for Gasoline Particulate Filters

2019-04-02
2019-01-0969
Gasoline particulate filters (GPFs) are extremely effective at reducing tailpipe emissions of particulate mass and particulate number. Especially in the European and Chinese markets, where a particulate number standard is legislated, we see gasoline particulate filters being deployed in production on gasoline direct injected engines. Due to the high temperature in gasoline exhaust, most applications are expected to be passively regenerating without the help of an active regeneration strategy. However, for the few cases where a customer drive cycle has consistently low speed over a long time frame, an active regeneration strategy may be required. This involves increasing the exhaust temperature at the GPF up to around 600 degC so that soot can be combusted. We compare two different ways of achieving these temperatures, namely spark retard and air fuel ratio modulation. The former generates heat in the engine, the latter generates heat in one or more catalysts in the exhaust system.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
Technical Paper

Prediction of Knock Sensor Locations with Background Noise

2005-05-16
2005-01-2554
This paper presents an analytical approach to predict knock sensor locations with the consideration of background noise in align with current accelerometer based knock detection techniques. Finite element (FE) based forced frequency response analysis is used to estimate the paths in engine structure for the propagation of dynamic energy generated by both combustion knock pressure and engine background noise sources. The analysis is performed with the consideration of the facts that, within interested frequency range, knock pressure, background noise sources, and even the accuracy of FE simulation, are uncertain or cannot be described precisely. Distributions for both knock sensitivity and CAE signal to noise ratio are obtained as results and used to predict the optimal knock sensor locations. Good correlation with testing results is observed.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
X