Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Particle Number Emissions: An Analysis by Varying Engine/Exhaust-System Design and Operating Parameters

2011-09-11
2011-24-0170
An increasing concern has been growing in the last years toward health effects due to Particulate Matter (PM) emissions. This triggered the widespread diffusion of Diesel Particulate Filters (DPFs), which equip almost every Diesel car and truck on the market, allowing to get large reduction (in the order of 95% and more) in terms of PM mass. However, PM health effects are believed to be more related to particle number rather than to particle mass. This gave rise in Europe to new regulations for passenger cars on total particle number, that will be introduced from EURO6 on. Engine/Exhaust-System assembly is therefore under investigation, to better understand the effectiveness of aftertreatment components toward particle number reduction, especially by varying engine and exhaust-system design/operating conditions, and to compare particle number emissions to particle mass emissions.
Technical Paper

Model Based Design Procedure of After Treatment Systems for Non-Road Diesel Engines

2011-09-11
2011-24-0186
In 2011-2013, regulations will be tightened for non-road vehicles, via the application of Stage III-B standards in Europe. With state-of-the-art technology (high pressure common rail, cooled EGR), non-road diesel engines will require DPFs to control PM, as 90% reduction is requested with respect to STAGE III-A standards. Additional challenges may also foresee the obtainment of STAGE III-B standards with STAGE III-A engine technology, by means of retrofit systems for PM control. In that case, retrofit systems must furthermore guarantee simple control systems, and must be robust especially in terms of limited back pressure increase during normal operation. Moreover, retrofit systems must offer flexibility from the design point of view, in order to be correctly operated with several engines of same class, possibly characterized by totally different PM flow rates, temperature, NOx and O₂ availability.
X