Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Quantitative DISI Spray Vapor Temperature Study for Different Biofuels by Two-Line Excitation Laser-Induced Fluorescence

2012-09-10
2012-01-1658
Biofuels and alternative fuels are increasingly being blended with conventional gasoline fuel to decrease overall CO₂ emissions. A promising way to achieve this is the use of DISI (direct-injection spark-ignition) technology. However, depending on temperature, pressure, chemical composition and the spark timing, unwanted pre-ignition may occur. Despite higher compression ratios, this engine knock can be decreased by lowering the mixing temperature. This results from the larger fuel evaporation enthalpy of certain biofuels which provides a non-homogeneous mixture throughout the combustion chamber. This work focuses on estimating the biofuel evaporation rate from absolute local vapor temperature and concentration. Measurements conducted in a high temperature/pressure cell using a multi-hole injector are carried out by applying planar, 2-line, laser-induced fluorescence and phase doppler interferometry.
X