Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Spatially-Resolved Thermal Degradation Induced Temperature Pattern Changes along a Commercial Lean NOX Trap Catalyst

2010-04-12
2010-01-1214
The low-temperature performance characteristics of a commercial lean NOX trap catalyst were evaluated using infra-red thermography (IRT) before and after a high-temperature aging step. Reaction tests included propylene oxidation, oxygen storage capacity measurements, and simulated cycling conditions for NOX reduction, using H₂ as the reductant during the regeneration step of the cycle. Testing with and without NO in the lean phase showed thermal differences between the reductant used in reducing the stored oxygen and that for nitrate decomposition and reduction. IRT clearly demonstrated where NOX trapping and regeneration were occurring spatially as a function of regeneration conditions, with variables including hydrogen content of the regeneration phase and lean- and rich-phase cycle times.
Technical Paper

Hydrocarbon Poisoning of Cu-Zeolite SCR Catalysts

2012-04-16
2012-01-1096
The effects of propylene (C₃H₆) and dodecane (n-C₁₂H₂₆) exposure on the NH₃-based selective catalytic reduction (SCR) performance of two Cu-exchanged zeolite catalysts were investigated. The first sample was a model Cu/beta zeolite sample and the second a state-of-the-art Cu/zeolite sample, with the zeolite material characterized by relatively small pores. Overall, the state-of-the-art sample performed better than the model sample, in terms of hydrocarbon inhibition (which was reduced) and N₂O formation (less formed). The state-of-the-art sample was completely unaffected by dodecane at temperatures lower than 300°C, and only slightly inhibited (less than 5% conversion loss), for standard SCR, by C₃H₆. There was no evidence of coke formation on this catalyst with C₃H₆ exposure. The model sample was more significantly affected by hydrocarbon exposure. With C₃H₆, inhibition is associated with its partial oxidation intermediates adsorbed on the catalyst surface.
X