Refine Your Search

Topic

Author

Search Results

Technical Paper

Theoretical Reduction in NOx Emissions Using a Torch Ignition System Operating with Homogeneous Charge

2015-09-22
2015-36-0476
The pollutants emitted by fuel burn in an internal combustion engine are harmful to humankind health. One of undesirable pollutants are the nitrogen oxides (NOx), witch in the presence of sunlight is responsible by photochemical mist, forming products that irritates eyes, respiratory system and may damage plants. The present article aims to present the theoretical potential reduction in volumetric emissions of nitrogen oxides (NOx) in an internal combustion engine operating with the torch ignition system and homogeneous charge. Therefore, a calculation methodology based in measured pressures and determined temperatures were implemented to check the potential reduction in these pollutant emissions. The presented methodology used to estimate the NOx formation is based in NO formation model presented by [1].
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Stratified Torch Ignition Engine: NOx Emissions

2016-10-25
2016-36-0387
The emission of nitric oxide (NOx) is the most difficult to limit among numerous harmful exhaust gas components. The NOX emission of internal combustion engines is mainly NO, but it will be oxidized into NO2 quickly after entering the air. NO is formed inside the combustion chamber in post-flame combustion by the oxidation of nitrogen from the air in conditions that are dependent on the chemical composition of the mixture, temperature and pressure. The correlation between NO emissions and temperature in the combustion chamber is a result of the endothermic nature of these reactions and can be described by extended Zeldovich Mechanism. The stratified torch ignition engine is able to run with lean mixture and low cyclic variability. Due to lean operation, the in-cylinder temperature of the STI engine is significantly lower than the conventional spark ignited one. This fact lead to a substantial reduction in NOx specific emission.
Technical Paper

Shock Tube for Analysis of Combustion of Biofuels

2013-10-07
2013-36-0300
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, and the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of ethanol doped with different levels of additive enhancer cetane number. The results are compared with the delays measured for the ignition diesel and biodiesel.
Technical Paper

Performance and Emission Analysis of the Turbocharged Spark-Ignition Engine Converted to Natural Gas

2003-11-18
2003-01-3726
In this work is proposed the installation of a turbocharger in a low dislocated volume engine, aiming to achieve a higher effective mean pressure and air fuel mixture density, for a better performance of the converted engine. This analysis is made through experimental tests in a break bench, following the Brazilian standard NBR ISO 1585. The results presented shows the basic behavior of the torque curves, power and gas emission, which reflects the changes in performance with both fuels for a aspirated and turbocharged engine, for all the engine rotation speeds. These results show the technical and economical viability of the conversion to Vehicular Natural Gas of a low cc engine, when adapted a commercial turbocharger kit.
Technical Paper

Numerical Analysis of Cooling Process of an Torch Ignition System

2014-09-30
2014-36-0330
The internal combustion engines require an efficient cooling system, the high temperatures generates at the time of combustion, reaching 2500 K peak burned gas. The materials used in the construction of the cylinder must operate within a maximum value, as well as the fluid film of lubricant oil. A bad dimensioned cooling system can lead to serious consequences such as loss of engine performance and/or efficiency, pre-ignition and increased exhaust emissions and may even lead to the destruction of the engine. In the torch ignition system overheating of the pre-chamber is even more critical and may lead to significant losses. Thus the torch ignition system requires an efficient cooling to prevent deterioration of the pre-chamber and consequently the engine caused by overheating. The solution proposed to resolve this inconvenience is the use of the cooling gallery in the cylinder head, for cooling the pre-chamber that is selected.
Technical Paper

Multi-Cylinder Torch Ignition System Operating With Homogeneous Charge - Performance and CO2

2017-11-07
2017-36-0250
Global trends in the development of spark ignition internal combustion engines lead to the adoption of solutions that reduce CO2 emissions and fuel consumption. Downsizing is a well-established path for this reduction, but it is necessary to use other technologies in order to achieve these ever more rigorous levels. A homogeneous torch ignition system is a viable alternative for reducing CO2 emissions with a combined reduction in specific fuel consumption and increased thermal efficiency. Thus a prototype adapted from an Otto engine with four cylinders is used for analysis. The performance and CO2 emission reference data were initially obtained with the baseline engine operating with a stoichiometric mixture. Then for the same conditions of BMEP, angular velocity and gradual lean of the mixture from the stoichiometry, the results of the adapted system are obtained.
Technical Paper

Modeling of a Torch Ignition System Using One-Dimensional Model of Computational Simulation

2014-09-30
2014-36-0332
An torch ignition system with homogeneous charge is numerically analyzed using a one-dimensional computational model. The new ignition system is implemented in a four-cylinder engine, spark ignition, 1600 cm3, 16 valves. Parameters such as mass burn fraction profile and pressure vs crank angle are compared with experimental data obtained with the torch ignition system operating homogeneous charge with stoichiometric mixture. The computational model uses information such as the pre-chamber pressure as a function of crack angle, intake and exhaust pressure, volumetric efficiency, maps of injection and ignition, valve discharge and valve intake coefficient, lifting valve, laminar flame speed, among others parameters.
Technical Paper

Measuring and Comparing the Ignition Delay Times of Diesel, Ethanol Additive and Biodiesel Using a Shock Tube

2014-09-30
2014-36-0187
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of diesel, biodiesel and ethanol doped with different levels of additive enhancer cetane number. The results are compared with the ignition delay times measured for other authors.
Technical Paper

Longitudinal Performance of a BAJA SAE Vehicle

2010-10-06
2010-36-0315
Driven by the necessity to reduce costs and improve products quality the automotive industry replaced the design method known as "trial and error" by those grounded on mathematical and physical theory. In this context, a longitudinal performance test was made by BAJA SAE UFMG team, in order to acquire vehicular performance data that will be used to validate computer models. The methodology consists of sensors and data acquisition system research, validation, fixation and installation in the vehicle, test and process of acquired data. From these steps, correlated data were acquired from magnitudes such as angular velocity in transmission shafts, global longitudinal acceleration and velocity, travel of break and throttle pedals and pressure inside of master cylinder. These results developed the knowledge about vehicular dynamic allowing the improvement of futures prototypes.
Technical Paper

Exhaust Emission Analysis of a Spark Ignition Engine Operating with Hydrogen Injection in a Pre-Combustion Chamber

2020-01-13
2019-36-0121
Due to the large negative impact of combustion gas emissions on air quality and the more stringent environmental legislation, research on internal combustion engines (ICE) are being developed to reduce emissions of pollutant gases to the atmosphere. One of the research fronts is the use of lean mixtures with the pre-chamber ignition system (PCIS). This system consists of a pre-chamber (PC) connected to the main chamber by one or more interconnecting holes. A spark plug initiates combustion of the mixture present in the pre-chamber, which is propagated as gas jet into the main chamber, igniting the lean mixture present therein. The gas jets have high thermal and kinetic energy, which promote faster combustion duration, making the system less prone to knock and with lower cyclic variability of the IMEP, enabling the lean limit extension. The pre-chamber system can be assisted with a supplementary liquid or gaseous fuel injection, enabling the charge stratification.
Technical Paper

Emissions of Hydrocarbons in a Torch Ignition Engines Operating with Homogeneous Charge

2017-11-07
2017-36-0394
The automobile industry and its growing commitment to the environment have collaborated in the development of technologies to reduce emissions of gaseous pollutants, including hydrocarbons. Recent works are aimed at the development of the torch ignition in internal combustion engines of the Otto cycle. A prototype characterized by a torch ignition system with fixed geometry of pre-chamber per cylinder, with a volume of 3.66 cm3 and a single nozzle with a diameter of 6.00 mm, fed with homogeneous mixture originating from Combustion chamber. The ignition and injection system was controlled by a reprogrammable electronic management system. The main results were an increase of around 10% in thermal efficiency and reductions of up to 91% in carbon monoxide emissions, but there was a considerable increase in total hydrocarbons (THC) emissions.
Technical Paper

Effects of the Engine Cooling System Design on Fuel Consumption - a Numerical Assessment

2021-03-26
2020-36-0182
One of the biggest challenges for mobility engineers today is the reduction of fuel consumption while keeping or even improving the automobiles propulsion system performance. A great part of the current powertrain components is developed to work at high engine loads and extreme environmental conditions, among which the engine cooling system, for example. As the overall vehicle efficiency depends directly on the thermal system design, it is important to make a careful investigation of the external ambient to develop this system on the best possible way, seeking to minimize the negative impacts at normal driving situations, which represents the most of the vehicle's life cycle. In this regard, the present paper reports a numerical study about the impacts of different cooling system hardware configurations on the fuel consumption of a turbocharged flex-fuel engine.
Technical Paper

Effects of operation temperature on exhaust emissions in a spark ignition system using pre-chamber stratified system

2020-01-13
2019-36-0130
Atmospheric pollution is the major public health issue in many cities around the world. Internal combustion engines (ICE) and industries are common sources of pollutants that aggravate this situation. Aiming to overcome this problem, increasingly restrictive legislation on combustion pollutant emissions has been formulated and new technologies are being developed to ensure compliance with such restrictions. In this scenario, the lean mixtures appear as a possible alternative, but also bring some inconveniences such as combustion instabilities. Pre-chamber ignition systems (PCIS) enable a more stable combustion process due to high kinetic, thermal and chemical energy of the gases from the pre-chamber (PC), which pass through nozzles and begin the combustion process of the air-fuel mixture contained in the main combustion chamber (MC). However, some challenges still have to be overcome in the development of these systems, one of the main ones being hydrocarbon (HC) emissions.
Technical Paper

Dynamic Analysis of Spark Ignition Engines

2012-10-02
2012-36-0138
To attend the new tendencies of the automotive market, new technologies must be used throughout the engine conception. One way of improving the project is to use computational numerical simulation, predicting engine behavior in a wide range of situations. This paper presents a methodology to estimate the engine characteristic parameters necessary to numerical simulation. Morse test was used to determine friction power, mean effective pressure friction and friction torque, considering the engine behavior during cylinder ignition cut-off. In this test all the results were compatible with manufacturer data, which validates the methodology. To define the moment of inertia, it's also proposed a fuel cut methodology, associated with the Morse test, because the torque values measured by dynamometer after the fuel cut did not correspond to the real value. Thus, plausible values of engine moment of inertia, very close to values obtained by software, were obtained.
Technical Paper

Direct Injection Diesel Engine Cylinder Pressure Modelling via NARMA Identification Technique

2005-04-11
2005-01-0029
Future engine control systems need suitable and accurate models for combustion. For this purpose, this paper presents a practical application of nonlinear autoregressive moving average polynomial models with exogenous inputs (NARMAX) technique to model pressure dynamics inside the cylinder of a direct injection compression ignition engine. Two models have been investigated taking two different sets of input variables. The first model only includes basic injection settings available from the electronic control unit. The second model uses the instantaneous crankshaft revolution speed as a main model input. Model parameter identification and validation are performed with experimental data obtained from a test engine equipped with a piezoelectric pressure sensor and with data computed from a thermodynamic-based engine cycle simulation code.
Technical Paper

Design and Construction Methodology of a Stratified Torch Ignition System

2013-10-07
2013-36-0562
It developed a design and construction methodology of a stratified charge torch ignition system for an Otto engine aiming fuel consumption and pollutant emission reduction. The torch ignition system is made of a combustion pre-chamber equipped with a direct fuel injector, an air injector and a spark plug. Fuel is directly injected in the pre-chamber aiming the formation of a lightly rich air fuel mixture. The combustion process starts in the pre-chamber and as the pressure rises, combustion jet flames are produced through interconnection nozzles into the main chamber. The high thermal energy of the jet flames reduces the combustion time, increases the combustion efficiency and allows the engine to efficiently burn lean air fuel mixture of several kinds of fuel in the main chamber, even those that are difficult to ignite. After the combustion takes place in the pre-chamber, air is also injected to help the exhaust process of the combustion products of the previous cycle.
Technical Paper

Design and Combustion Characteristics of an Ethanol Homogeneous Charge Torch Ignition System for a Single-cylinder Optical Engine

2016-10-25
2016-36-0130
The trends in the development of spark ignition engines leads to the adoption of lean mixtures in the combustion chamber. Torch ignition systems have potential to reduce simultaneously the NOx and CO emissions, while keeping the fuel conversion efficiency at a high level. This study aims to design and analyze a torch ignition system running with ethanol on lean homogeneous charge, adapted to an Otto cycle single-cylinder engine with optical visualization. The main objective is to achieve combustion stability under lean burn operation and to expand the flammability limit for increasing engine efficiency by means of redesigning the ignition system adapting a pre-chamber to the main combustion chamber. Experiments were conducted at constant speed (1000 rpm) using ethanol (E100) as fuel, for a wide range of injection, ignition and mixture formation parameters. Specific fuel consumption and combustion stability were evaluated at each excess air ratio.
Technical Paper

Constructive Parameters Analysis of Combustion Pre-Chamber Adapted in Torch-Ignition System of Otto Cycle Engine

2003-11-18
2003-01-3713
The torch ignition system consists in the inflammation of the air/fuel mixture by means of gases jet flames that constitute ignition lines. Engines with this feature have a cavity or combustion pre-chamber, physically separate from the main chamber. In these systems happens a larger turbulence generation, due the movement of the gases inside the pre-chamber and through the interconnection orifices. The charge stratification, by means of an auxiliary inlet fuel system, also contributes for the fast and insurance inflammation of lean mixtures and the most varied combustible, including the difficult direct spark ignition fuels. This work presents the design elaboration of combustion pre-chamber from an analysis of the influence of the main constructive parameters in the combustion process.
Technical Paper

Combustion influence of a pre-chamber ignition system in a SI commercial engine

2018-09-03
2018-36-0115
Environmental policies and fuel costs have driven the development of new technologies for internal combustion engines. In this sense, the use of mixtures with small portions of fuel allows lower fuel consumption and pollutants emissions, emerging as a promising strategy. Despite the advantages, lean burn requires a larger energy source to provide satisfactory flame propagation speed and consequently a stable combustion. The use of pre-chamber ignition systems (PCIS) has been used in SI engines to assist the start of combustion of lean mixtures, in which a supplementary fuel system can stratify the amount of either liquid or gaseous fuels supplied to the pre-chamber. In this context, this paper aims to evaluate combustion characteristics of a commercial engine with the use of stratified PCIS operating with impoverished mixtures of ethanol-air in main-chamber and hydrogen assistance in pre-chamber.
X