Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application

2009-04-20
2009-01-0790
Sliding wear of magnesium (Mg) engine cylinder bore surfaces and corrosion of Mg engine coolant channels are the two unsolved critical issues that automakers have to deal with in development of magnesium-intensive engines. In this paper, Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on AJ62 Mg alloy to provide wear and corrosion protection. In order to optimize the PEO process, orthogonal experiments were conducted to investigate the effect of PEO process parameters on the wear properties of PEO coatings. The PEO coatings showed a much better wear resistance, as well as a smaller friction coefficient, than the AJ62 substrate. The galvanic corrosion property of AJ62 Mg coupled with stainless steel and aluminum (Al) was investigated via immersion corrosion test in an engine coolant. Applying PEO coating on Mg can effectively prevent the galvanic corrosion attack to Mg.
Technical Paper

Uses for Stabilized Aluminum Foam in Crashworthiness and Strengthening Applications

2003-03-03
2003-01-1295
Stabilized Aluminum Foam (SAF) is a material produced by introducing gas bubbles into molten aluminum. Two examples will be used to illustrate the potential use of SAF in energy absorption and structural reinforcement applications. The first is use of SAF in a crashbox to absorb energy in a 15km/hr collision and prevent damage to the rails as part of a front-end energy management system. The second is as a filler in a hollow structure subject to bending loads, which potentially could find application in rails and pillars. By filling a hollow structure with SAF, the bending strength is increased dramatically while the weight increases are not significant. Numerical modeling using LS DYNA gave very good agreement with experimental results.
Technical Paper

Uncertainty, Sensitivity and Data Quality Assessment for Life Cycle Value Assessment (LCVA)

1998-02-23
980479
Life Cycle Value Assessment (LCVA) is a decision making tool which considers environmental, economic and/or social aspects for the entire life cycle of a product or process from “cradle-to-grave”. LCVA can be used for a wide range of public policy and business decisions with the analysis being performed at various levels of rigour. By its nature, LCVA utilizes data sets of varying qualities drawn from a wide range of sources. The uncertainties in the input data obviously lead to uncertainties in the results of the LCVA analysis. To establish confidence in an LCVA's recommendations, it is important to consider these uncertainties and incorporate an assessment of uncertainty into the LCVA process. However, the diverse nature of the data sets being used makes it difficult to rigorously establish data uncertainty levels. In addition, the complexity of most life cycle models makes it difficult to trace uncertainty through the analysis process.
Technical Paper

Turbulence Effects on Developing Turbulent Flames in a Constant Volume Combustion Chamber

1993-03-01
930867
High speed Schlieren video and pressure trace analyses were used to study the turbulence effects on burning velocities in a constant volume combustion chamber. Propane-air and methane-air mixtures of equivalence ratios between 0.75 and 0.96 were ignited at 101 kPa and 296 K. Schlieren images of flame growth were recorded on video at 2000 frames per second while combustion chamber pressure was simultaneously recorded. Turbulence at ignition was up to 7 m/s intensity with 2 mm or 8 mm integral scale, produced by pulling a perforated plate across the chamber prior to ignition. In the analysis, the turbulence parameters during combustion were adjusted for the effect of decay and rapid distortion in a closed chamber. Results of both video and pressure trace analyses show a linear relationship between turbulent burning velocity and turbulence intensity as expected.
Technical Paper

Thermal Efficiency Analyses of Diesel Low Temperature Combustion Cycles

2007-10-29
2007-01-4019
Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles on a common-rail diesel engine with a conventional diesel fuel. Empirical studies have been conducted under independently controlled exhaust gas recirculation, intake boost, and exhaust backpressure. Up to 8 fuel injection pulses per cylinder per cycle have been applied to modulate the homogeneity history of the early injection diesel low temperature combustion operations in order to improve the phasing of the combustion process. The impact of heat release phasing, duration, shaping, and splitting on the thermal efficiency has been analyzed with zero-dimensional engine cycle simulations. This paper intends to identify the major parameters that affect diesel low temperature combustion engine thermal efficiency.
Technical Paper

The University of Windsor - St. Clair College E85 Silverado

2001-03-05
2001-01-0680
The fuel called E-85 can be burned effectively in engines similar to the engines currently mass-produced for use with gasoline. Since the ethanol component of this fuel is produced from crops such as corn and sugar cane, the fuel is almost fully renewable. The different physical and chemical properties of E-85, however, do require certain modifications to the common gasoline engine. The Windsor - St. Clair team has focused their attention to modifications that will improve fuel efficiency and reduce tailpipe emissions. Other modifications were also performed to ensure that the vehicle would still operate with the same power and driveability as its gasoline counterpart.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

The Impact of Intake Dilution and Combustion Phasing on the Combustion Stability of a Diesel Engine

2014-04-01
2014-01-1294
Conventionally, the diesel fuel ignites spontaneously following the injection event. The combustion and injection often overlap with a very short ignition delay. Diesel engines therefore offer superior combustion stability characterized by the low cycle-to-cycle variations. However, the enforcement of the stringent emission regulations necessitates the implementation of innovative diesel combustion concepts such as the low temperature combustion (LTC) to achieve ultra-low engine-out pollutants. In stark contrast to the conventional diesel combustion, the enabling of LTC requires enhanced air fuel mixing and hence a longer ignition delay is desired. Such a decoupling of the combustion events from the fuel injection can potentially cause ignition discrepancy and ultimately lead to combustion cyclic variations.
Technical Paper

The First and Second Law Analysis of Spark Ignition Engine Fuelled with Compressed Natural Gas

2003-10-27
2003-01-3091
This paper presents a fundamental thermodynamic modeling approach to study internal combustion engines. The computations of the thermodynamic functions, especially availability, have been developed to seek better energy utilization, analyze engine performance and optimize design of spark ignition (SI) engines fueled with compressed natural gas (CNG), by using both the first and the second law analyses. A single-zone heat release model with constant thermodynamic properties is built into the air cycle simulation, while a more comprehensive two-zone combustion model with burning rate as a sinusoidal function of crank angle is built into the fuel/air thermodynamic engine cycle simulation. The computations mainly include pressure, unburned and burned zone temperature, indicated work, heat loss, mass blowby, availability destruction due to combustion, fuel chemical availability, availability transfer with heat, availability transfer with work and availability exhaust to the environment.
Technical Paper

Tailpipe Emissions Comparison Between Propane and Natural Gas Forklifts

2000-06-19
2000-01-1865
It is commonly stated that natural gas-fueled forklifts produce less emissions than propane-fueled forklifts. However, there is relatively little proof. This paper reports on a detailed comparative study at one plant in Edmonton, Canada where a fleet of forklift trucks is used for indoor material movement. (For convenience, the acronym NGV, ie. Natural Gas Vehicle is used to designate natural gas-fueled and LPG, ie. Liquified Petroleum Gas, is used to designate propane-fueled forklifts). Until recently the forklift trucks (of various ages) were LPG carburetted units with two-way catalytic converters. Prompted partially by worker health concerns, the forklifts were converted to fuel injected, closed-loop controlled NGV systems with three-way catalytic converters. The NGV-converted forklifts reduced emissions by 77% (NOX) and 76% (CO) when compared to just-tuned LPG forklifts.
Technical Paper

Symmetric Negative Valve Overlap Effects on Energy Distribution of a Single Cylinder HCCI Engine

2018-04-03
2018-01-1250
The effects of Variable Valve Timing (VVT) on Homogeneous Charge Compression Ignition (HCCI) engine energy distribution and waste heat recovery are investigated using a fully flexible Electromagnetic Variable Valve Timing (EVVT) system. The experiment is carried out in a single cylinder, 657 cc, port fuel injection engine fueled with n-heptane. Exergy analysis is performed to understand the relative contribution of different loss mechanisms in HCCI engines and how VVT changes these contributions. It is found that HCCI engine brake thermal efficiency, the Combined Heat and Power (CHP) power to heat ratio, the first and the second law efficiencies are improved with proper valve timing. Further analysis is performed by applying the first and second law of thermodynamics to compare HCCI energy and exergy distribution to Spark Ignition (SI) combustion using Primary Reference Fuel (PRF). HCCI demonstrates higher fuel efficiency and power to heat and energy loss ratios compared to SI.
Technical Paper

Surface Effect of a PEO Coating on Friction at Different Sliding Velocities

2015-04-14
2015-01-0687
In order to reduce the weight of an automotive engine, an aluminum (Al) alloy engine block with cast iron liner has been successfully used to replace the gray cast iron engine. For newly emerging Al linerless engine in which the low surface hardness of the aluminum alloy has to be overcome, a few surface processing technologies are used to protect the surface of cylinders. Among them, plasma transferred wire arc (PTWA) thermal spraying coating is becoming popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum alloy and reducing the friction between the cylinder and piston. In this work, a PEO coating with a thickness of ∼20 μm was prepared, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coating at oil lubricant conditions. Different surface roughness of the coating and a large range of the sliding speeds were employed for the tests.
Technical Paper

Sub-Zero Cold Starting of a Port-Injected M100 Engine Using Plasma Jet Ignition and Prompt EGR

1993-03-01
930331
This study describes the design and proof-of-concept testing of a system which has enabled sub-zero cold starting of a port-injected V6 engine fuelled with M100. At -30°C, the engine could reach running speed about 5s after the beginning of cranking. At a given temperature, starts were achieved using a fraction of the mixture enrichment normally required for the more volatile M85 fuels. During cold start cranking, firing is achieved using a high energy plasma jet ignition system. The achievement of stable idling following first fire is made possible through the use of an Exhaust Charged Cycle (ECC) camshaft design. The ECC camshaft promptly recirculates hot exhaust products, unburnt methanol and partial combustion products back into the cylinder to enhance combustion. The combined plasma jet/ECC system demonstrated exceptionally good combustion stability during fast idle following sub-zero cold starts.
Technical Paper

Study of Low Temperature Combustion with Neat n-Butanol on a Common-rail Diesel Engine

2015-03-10
2015-01-0003
This study investigates neat n-butanol, as a cleaner power source, to directly replace conventional diesel fuels for enabling low temperature combustion on a modern common-rail diesel engine. Engine tests are performed at medium engine loads (6∼8 bar IMEP) with the single-shot injection strategy for both n-butanol and diesel fuels. As indicated by the experimental results, the combustion of neat n-butanol offers comparable engine efficiency to that of diesel while producing substantially lower NOx emissions even without the use of exhaust gas recirculation. The greater resistance to auto-ignition allows n-butanol to undergo a prolonged ignition delay for air-fuel mixing; the high volatility helps to enhance the cylinder charge homogeneity; the fuel-borne oxygen contributes to smoke reduction and, as a result, the smoke emissions of n-butanol combustion are generally at a near-zero level under the tested engine operating conditions.
Technical Paper

Study of Heat Release Shaping via Dual-Chamber Piston Bowl Design to Improve Ethanol-Diesel Combustion Performance

2017-03-28
2017-01-0762
In this work, an innovative piston bowl design that physically divides the combustion chamber into a central zone and a peripheral zone is employed to assist the control of the ethanol-diesel combustion process via heat release shaping. The spatial combustion zone partition divides the premixed ethanol-air mixture into two portions, and the combustion event (timing and extent) of each portion can be controlled by the temporal diesel injection scheduling. As a result, the heat release profile of ethanol-diesel dual-fuel combustion is properly shaped to avoid excessive pressure rise rates and thus to improve the engine performance. The investigation is carried out through theoretical simulation study and empirical engine tests. Parametric simulation is first performed to evaluate the effects of heat release shaping on combustion noise and engine efficiency and to provide boundary conditions for subsequent engine tests.
Technical Paper

Study of Dimethyl Ether Fuel Spray Characteristics and Injection Profile

2024-04-09
2024-01-2702
The majority of transportation systems have continued to be powered by the internal combustion engine and fossil fuels. Heavy-duty applications especially are reliant on diesel engines for their high brake efficiency, power density, and robustness. Although engineering developments have advanced engines towards significantly fewer emissions and higher efficiency, the use of fossil-derived diesel as fuel sets a fundamental threshold in the achievable total net carbon reduction. Dimethyl ether can be produced from various renewable feedstocks and has a high chemical reactivity making it suitable for heavy-duty applications, namely compression ignition direct injection engines. Literature shows the successful use of DME fuels in diesel engines without significant hardware modifications.
Journal Article

Residual Stresses and Dimensional Changes in Ferritic Nitrocarburized Navy C-rings and Prototype Stamped Parts Made from SAE 1010 Steel

2009-04-20
2009-01-0425
Nitrocarburizing is an economical surface hardening process and is proposed as an alternative heat treatment method to carbonitriding. The focus of this study is to compare the size and shape distortion and residual stresses resulting from the ferritic nitrocarburizing and gas carbonitriding processes for SAE 1010 plain carbon steel. Gas, ion and vacuum nitrocarburizing processes utilizing different heat treatment temperatures and times were performed to compare the different ferritic nitrocarburizing processes. Navy C-Ring specimens and prototype stamped parts were used to evaluate size and shape distortion. X-ray diffraction techniques were used to determine the residual stresses in the specimens. Overall, the test results indicate that the nitrocarburizing process gives rise to smaller dimensional changes than carbonitriding, and that the size and shape distortion can be considerably reduced by applying appropriate ferritic nitrocarburizing procedures.
Technical Paper

Reformer Gas Composition Effect on HCCI Combustion of n-Heptane, iso-Octane, and Natural Gas

2008-04-14
2008-01-0049
Although HCCI engines promise low NOx emissions with high efficiency, they suffer from a narrow operating range between knock and misfire because they lack a direct means of controlling combustion timing. A series of previous studies showed that reformer gas, (RG, defined as a mixture of light gases dominated by hydrogen and carbon monoxide), can be used to control combustion timing without changing mixture dilution, (λ or EGR) which control engine load. The effect of RG blending on combustion timing was found to be mainly related to the difference in auto-ignition characteristics between the RG and base fuel. The practical effectiveness of RG depends on local production using a fuel processor that consumes the same base fuel as the engine and efficiently produces high-hydrogen RG as a blending additive.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-04-14
2008-01-1000
A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Real-Time, On-Road Measurement of Driving Behavior, Engine Parameters and Exhaust Emissions

2002-05-06
2002-01-1714
Automotive tailpipe emissions are a significant contribution to urban air quality problems.(1) However, it is difficult to quantify the extent of that contribution and to quantify any progress in solving the problem. Emissions inventories are commonly based on vehicle registrations, assumed mileage and a set of emission factors. The emission factors are based on dynamometer testing of selected vehicles undertightly controlled conditions. Actual vehicle operation in any urban area encompasses a wider range of vehicles, operating conditions and ambient conditions. Given the highly tuned nature of current engine management systems, the actual in-use emissions levels can be highly sensitive to non-standard ambient and operating situations.(2,3,4,5) This paper describes an on-board system used to record ambient conditions, driving behavior, vehicle operating parameters, fuel consumption and exhaust emissions.
X