Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental Characterisation of Heat Transfer in Exhaust Pipe Sections

2008-04-14
2008-01-0391
This paper describes the characterisation of heat transfer in a series of 11 test sections designed to represent a range of configurations seen in production exhaust systems, which is part of a larger activity aimed at the accurate modeling of heat transfer and subsequent catalyst light off in production exhaust systems comprised of similar geometries. These sections include variations in wall thickness, diameter, bend angle and radius. For each section a range of transient and steady state tests were performed on a dynamic test cell using a port injected gasoline engine. In each case a correlation between observed Reynolds number (Re) and Nusselt number (Nu) was developed. A model of the system was implemented in Matlab/Simulink in which each pipe element was split into 25 sub-elements by dividing the pipe into five both axially and radially. The modeling approach was validated using the experimental data.
Technical Paper

Investigation of ‘Sweep’ Mapping Approach on Engine Testbed

2002-03-04
2002-01-0615
Steady state mapping is fundamental to optimizing IC engine operation. Engine variables are set, a predefined settling time elapses, and then engine data are logged. This is an accurate but time consuming approach to engine testing. In contrast the sweep method seeks to speed up data capture by continuously moving the engine through its operating envelope without dwelling. This is facilitated by the enhanced capability of modern test rig control systems. The purpose of this work is to compare the accuracy and repeatability of the sweep approach under experimental conditions, with that of steady state testing. Limiting factors for the accuracy of the sweep approach fall into two categories. Firstly on the instrumentation side - transducers have a characteristic settling time. Secondly on the engine side - thermal and mechanical inertias will mean that instantaneous measurements of engine parameters differ from the steady state values.
Technical Paper

The Effect of Forced Cool Down on Cold Start Test Repeatability

2009-06-15
2009-01-1976
Increasing the number of cold-start engine cycles which could be run in any one day would greatly improve the productivity of an engine test facility. However with the introduction of forced cooling procedures there is the inherent risk that test-to-test repeatability will be affected. Therefore an investigation into the effects caused by forced cooling on fuel consumption and the temperature distribution through the engine and fluids is essential. Testing was completed on a 2.4 litre diesel engine running a cold NEDC. The test facility utilises a basic ventilation system, which draws in external ambient air, which is forced past the engine and then drawn out of the cell. This can be supplemented with the use of a spot cooling fan. The forced cool down resulted in a much quicker cool down which was further reduced with spot cooling, in the region of 25% reduction.
X