Refine Your Search

Topic

Author

Search Results

Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Technical Paper

Turbocharger Dynamic Performance Prediction by Volterra Series Model

2014-10-13
2014-01-2558
Current turbocharger models are based on characteristic maps derived from experimental measurements taken under steady conditions on dedicated gas stand facility. Under these conditions heat transfer is ignored and consequently the predictive performances of the models are compromised, particularly under the part load and dynamic operating conditions that are representative of real powertrain operations. This paper proposes to apply a dynamic mathematical model that uses a polynomial structure, the Volterra Series, for the modelling of the turbocharger system. The model is calculated directly from measured performance data using an extended least squares regression. In this way, both compressor and turbine are modelled together based on data from dynamic experiments rather than steady flow data from a gas stand. The modelling approach has been applied to dynamic data taken from a physics based model, acting as a virtual test cell.
Technical Paper

The Potential for Simulation of Driveability of CVT Vehicles

2000-03-06
2000-01-0830
This paper introduces the work ongoing at the University of Bath in a series of projects aimed at characterising the driveability of CVT equipped vehicles and using the findings to help develop a strategy for a prototype powertrain controller during transient driving situations. Results of the driveability investigation of a first project in this series have already been published [1], where the driveability of three CVT vehicles was appraised. A follow-up project extends this work appraising more CVT vehicles and also comparing driveability aspects of CVT transmissions to conventional AT. The paper relates the common experimental part of the two projects showing linked results and describing how a simulation program can be used to predict and improve the driveability of the powertrain controller.
Technical Paper

The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption

2010-04-12
2010-01-0802
Engine thermal management systems (TMS) are gaining importance in engine development and calibration to achieve low fuel consumption and meet future emissions standards. To benefit from their full potential, a thorough understanding of the effects on engine behavior is necessary. Steady state tests were performed on a 2.0L direct injection diesel engine at different load points. A design of experiments (DoE) approach was used to conduct exhaust gas recirculation (EGR) and injection timing swings at different coolant temperatures. The effect of the standard engine controller and calibration was observed during these tests. The injection timing strategy included a significant dependency on coolant temperature, retarding injection by about 3° crank angle between coolant temperatures of 70°C and 86°C. In contrast, EGR strategy was essentially independent of coolant temperature, though physical interactions were present due in part to the EGR cooler.
Technical Paper

The Effect of Hydraulic Circuit Design and Control on the Efficiency of a Continuously Variable Transmission

1996-08-01
961797
As part of a larger programme of work on the integrated control of engine and transmissions a study has been made of the control aspects of the transmission with a detailed investigation of the hydraulic circuit. The requirements of the broader programme necessitated an electrical input for the transmission control and a test bed version was successfully modified with electro-hydraulic valves. Attention to detail in the design of the hydraulic circuit and the control of operating pressure can bring significant benefits to the transmission efficiency with consequent beneficial effects on fuel economy. This paper investigates several aspects of the components used and their effect on efficiency, in particular pump sizing. This investigation is illustrated with results from a computer simulation of the system. Possible improvements through a modified control strategy for the belt pressure are also proposed with steady state results obtained experimentally from the test bed transmission.
Technical Paper

The Effect of Forced Cool Down on Cold Start Test Repeatability

2009-06-15
2009-01-1976
Increasing the number of cold-start engine cycles which could be run in any one day would greatly improve the productivity of an engine test facility. However with the introduction of forced cooling procedures there is the inherent risk that test-to-test repeatability will be affected. Therefore an investigation into the effects caused by forced cooling on fuel consumption and the temperature distribution through the engine and fluids is essential. Testing was completed on a 2.4 litre diesel engine running a cold NEDC. The test facility utilises a basic ventilation system, which draws in external ambient air, which is forced past the engine and then drawn out of the cell. This can be supplemented with the use of a spot cooling fan. The forced cool down resulted in a much quicker cool down which was further reduced with spot cooling, in the region of 25% reduction.
Technical Paper

Testing of a Modern Wankel Rotary Engine - Part II: Motoring Analysis

2022-03-29
2022-01-0592
The present work represents the continuation of the introductory study presented in part I [11] where the experimental plan, the measurement system and the tools developed for the testing of a modern Wankel engine were illustrated. In this paper the motored data coming from the subsequent stage of the testing are presented. The AIE 225CS Wankel rotary engine produced by Advanced Innovative Engineering UK, installed in the test cell of the University of Bath and equipped with pressure transducers selected for the particular application, has been preliminarily tested under motored conditions in order to validate the data acquisition software on the real application and the correct determination of the Top Dead Centre (TDC) location which is of foremost importance in the computation of parameters such as the indicated work and the combustion heat release when the engine is tested later under fired conditions.
Technical Paper

Testing of a Modern Wankel Rotary Engine - Part I: Experimental Plan, Development of the Software Tools and Measurement Systems

2019-01-15
2019-01-0075
Wankel rotary engines are becoming an increasingly popular area of research with regard to their use as a range extender in the next generation of Hybrid Electric Vehicle (HEV). Due to their simple design, lightness, compactness and very favourable power-to-weight ratio, they represent one of the best alternative solutions to classic reciprocating piston engines. On the other hand, current Wankel engines still need improvements in terms of specific fuel consumption and emissions. This paper describes an innovative approach for the assessment of the performance of a modern rotary engine. All the experimental activities will be carried out within the Innovate UK funded ADAPT Intelligent Powertrain project led by Westfield Sportscars Limited.
Technical Paper

Simulation of Suction Flow Ripple in Power Steering Pumps

1998-09-14
982023
Noise emitted from the pump can be a major influence on the overall noise created by a power steering system. Dynamic simulation can aid the designer by showing the effect of the pump geometry and oil properties on noise before the prototype has been built. This paper discusses a simulation of suction port flow ripple in a power steering vane pump, which is validated against experimental data. Results show that the mean pressure in the delivery line affects the amplitude of suction port flow ripple. Internal leakage in the pump was found to have little effect on suction port flow ripple. The level of high-frequency flow ripple from the suction port was found to be comparable with or greater than that from the delivery port. The simulation is used to recommend the addition of relief grooves to reduce the high-frequency flow ripple.
Technical Paper

Simulation Study of Divided Exhaust Period for a Regulated Two-stage Downsized SI Engine

2014-10-13
2014-01-2550
The Divided Exhaust Period (DEP) concept is an approach which has been proved to significantly reduce the averaged back pressure of turbocharged engines whilst still improving its combustion phasing. The standard layout of the DEP system comprises of two separately-functioned exhaust valves with one valve feeding the blow-down pulse to the turbine whilst the other valve targeting the scavenging behaviour by bypassing the turbine. Via combining the characteristics of both turbocharged engines and naturally aspirated engines, this method can provide large BSFC improvement. The DEP concept has only been applied to single-stage turbocharged engines so far. However, it in its basic form is in no way restricted to a single-stage system. This paper, for the first time, will apply DEP concept to a regulated two-stage (R2S) downsized SI engine.
Technical Paper

Robust Control of Hydraulic Servos

1996-08-01
961795
Developing controllers for hydraulic servos is difficult due to the inherent uncertainty and nonlinear characteristics of the system. Systems are classed as uncertain when they are subject to unknown parameter variations or disturbances, or when there is incomplete knowledge of the system model, all of which are common in hydraulic servo systems. However, unlike conventional control techniques, the use of modern control methods means that system uncertainty can be considered at the controller design stage, and consequently robust controllers can be developed. In this paper the robust control of hydraulic servo systems is considered, and sources of uncertainty typical in hydraulic drives are discussed. The effect of ignoring these uncertainties is demonstrated by simulation experiments of a hydraulic servo, comparing conventional control techniques to the modern approach of H∞ optimal control. The implementation of modern controllers is also discussed.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
Technical Paper

Reduction of Steady State NOx Levels from an Automotive Diesel Engine Using Optimised VGT/EGR Schedules

1999-03-01
1999-01-0835
Currently, 80% of European diesel passenger cars are turbocharged and as emission standards become more stringent exhaust gas recirculation (EGR) will be the primary means of suppressing oxides of nitrogen (NOx). The lighter the load the greater will be the combustion tolerance to increased EGR flow rates and hence increased NOx suppression. Automotive diesel engines using wastegated turbochargers cannot recirculate above 50% EGR without some sort of “added” device or system, which is able to displace the inlet fresh air charge. This has been demonstrated by throttling the diesel intake to reduce the fresh air inlet manifold pressure so allowing more EGR flow by virtue of a higher exhaust-side pressure due the effects of the turbocharger. The method reported here investigates a different approach to increasing the EGR rates by replacing a fixed geometry turbocharger (FGT) with a variable geometry turbocharger, (VGT).
Technical Paper

Predictions for Nucleate Boiling - Results From a Thermal Bench Marking Exercise Under Low Flow Conditions

2002-03-04
2002-01-1028
Two predictive methods have been applied to an IC engine cooling gallery simulator to provide benchmarking heat transfer information. The object of this work was to assess the suitability and accuracy of these methods for application to future on-engine heat transfer studies. Such studies are aimed at developing predictive tools to aid in the design of precision cooling systems. The modelling techniques of Rohsenow and Chen have been used, modified and validated. Compared against experimental data, the sub-cooled form of the Chen model has been found to be most representative for the cooling gallery simulator designed specifically to meet the requirements of this work.
Technical Paper

Potential of a Controllable Engine Cooling System to Reduce NOx Emissions in Diesel Engines

2004-03-08
2004-01-0054
This paper investigates the potential for reduced NOx emissions from the integration of thermal factors into the Diesel engine calibration process. NOx emissions from Diesel engines have been shown to be sensitive to engine operating temperature, which is directly related to the level of cooling applied to the engine, in addition to the main engine operating parameters such as injection timing and EGR ratio. Experimental engine characterization of the main engine parameters against coolant temperature set point shows that engine cooling settings can extend the feasible lower limits of fuel consumption and emissions output from Diesel engine. With the adoption of an integrated calibration methodology including engine cooling set point, NOx emissions can be improved by up to 30% at crucial high speed/load operating points seen in the NEDC drive cycle with a minor reduction in fuel economy and small increase in CO output.
Technical Paper

Position Estimation and Autonomous Control of a Quad Vehicle

2016-09-14
2016-01-1878
The major contribution of this paper is the general description of a complete integrating procedure of autonomous vehicle system. Using Robot Operating System (ROS) as the framework, process from senor integration to path planning and path tracking were performed. Based on an off-road All-Terrain Vehicle, an Extended Kalman filter based autonomous control strategy was developed on the ROS. Both the position estimation and autonomous control were performed on the ROS platform. For the position estimation phase, sensory measurements from GPS, IMU and wheel odometry were acquired and processed on ROS. In accordance with the ROS architecture, separate packages were developed for each sensor to gather and publish corresponding measurements. Furthermore, Extended Kalman filtering was performed to fuse all sensory measurements to achieve an optimizing accuracy.
Technical Paper

Optimising Cooling System Performance Using Computer Simulation

1997-05-19
971802
This paper presents a lumped parameter method for whole circuit simulation of vehicle cooling systems using the Bathfp simulation environment. The dynamic performance of a 1.8 litre internal combustion engine cooling system is examined. The simulation is compared with experimental data from a test rig incorporating a non-running engine with external heat source and a good correspondence is achieved. The background to the modelling approach is described. It is shown that simulating cooling systems with Bathfp offers the designer the flexibility to assess component sensitivity and changes in system configuration which will aid the process of cooling system optimisation.
Technical Paper

Non-Linear Modeling of Bushings and Cab Mounts for Calculation of Durability Loads

2014-04-01
2014-01-0880
Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation.
Technical Paper

Measurement and Prediction of Power Steering Vane Pump Fluidborne Noise

1993-05-01
931294
The design of quiet power steering vane pumps requires accurate experimental and analytical tools to assess fluidborne noise. Measurement of vane pump fluidborne noise-generating potential must minimize hydraulic circuit effects. The difficulties of distinguishing between pump and hydraulic circuit effects is discussed. A technique called the “secondary source” method for measuring positive displacement pump flow ripple is described. The technique allows evaluation of the pump discharge impedance and flow ripple based on the analysis of the wave propagation characteristics in a special test circuit. This test method is used to validate a computer model of the vane pump flow ripple at the rotating group discharge. The model computes the vane chamber pressure histories which are used to obtain net discharge flow ripple. Geometric definition is kept flexible in the model so that compression and leakage can be evaluated for any vane pump design.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
X