Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1970 Passenger Car High Altitude Emission Baseline

1979-02-01
790959
The 1977 Clean Air Act Amendments allow the U.S. Environmental Protection Agency to set high altitude emission standards for 1981-83, but specify that any such standards may not be more stringent than comparable sea level standards -- relative to 1970 emission levels. Since available high altitude emission data from 1970 models were incomplete and controversial, the Motor Vehicle Manufacturers Association contracted with Automotive Testing Laboratories, Inc. to test a fleet of 25 1970 cars. Results of the test program showed average increases in emissions at Denver's altitude, compared to sea level, to be about 30% for evaporative HC, 57 to 60% for exhaust HC, 215 to 247% for CO and -46 to -47% for NOx. Corresponding HC and CO exhaust emission baselines would be 6.4 to 6.6 and 108 to 118 g/mi respectively.
Technical Paper

A Biomechanical Analysis of Head, Neck, and Torso Injuries to Child Surrogates Due to Sudden Torso Acceleration

1984-10-01
841656
This paper reports on the injuries to the head, neck and thorax of fifteen child surrogates, subjected to varying levels of sudden acceleration. Measured response data in the child surrogate tests and in matched tests with a three-year-old child test dummy are compared to the observed child surrogates injury levels to develop preliminary tolerance data for the child surrogate. The data are compared with already published data in the literature.
Technical Paper

A Catalytic Oxidation Sensor for the On Board Detection of Misfire and Catalyst Efficiency

1992-10-01
922248
This paper describes a novel catalytic oxidation sensor which represents an attempt to realise a practical sensor for on vehicle detection of catalyst efficiency and misfire. Via experimental and modelling approaches, promising characteristics are established, which could mean that an application to the on-vehicle detection of catalyst efficiency and misfire is feasible.
Technical Paper

A Comparative Study of the Effects of Fuel Properties of Non-Petroleum Fuels on Diesel Engine Combustion and Emissions

1984-10-01
841334
A single cylinder indirect injection diesel engine was used to evaluate the emissions, fuel consumption, and ignition delay of non-petroleum liquid fuels derived from coal, shale, and tar sands. Correlations were made relating fuel properties with exhaust emissions, fuel consumption, and ignition delay. The results of the correlation study showed that the indicated fuel consumption, ignition delay, and CO emissions significantly correlated with the H/C ratio, specific gravity, heat of combustion, aromatics and saturates content, and cetane number, Multiple fuel properties were necessary to correlate the hydrocarbon emissions. The NOx emissions did not correlate well with any fuel property. Because these fuels from various resources were able to correlate succesfully with many of the fuel properties suggests that the degree of refinement or the chemical composition of the fuel is a better predictor of its performance than its resource.
Technical Paper

A Comparison of Total and Speciated Hydrocarbon Emissions from an Engine Run on Two Different California Phase 2 Reformulated Gasolines

1994-10-01
941972
New regulations from the state of California have established, for the first time, reactivity-based exhaust emissions standards for new vehicles and require that any clean alternative fuels needed by these vehicles be made available. Contained in these regulations are provisions for “reactivity adjustment factors” which will provide credit for vehicles which run on reformulated gasoline. The question arises: given two fuels of different chemical composition, but both meeting the criteria for CA Phase 2 gasoline (reformulated gasoline), how different might the specific reactivity of the exhaust hydrocarbons be? In this study we explored this question by examining the engine-out HC emissions from a single-cylinder version of the 5.4 L modular truck engine run on two different CA Phase 2 fuels.
Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

1996-10-01
961903
A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
Journal Article

A Detailed Chemistry Multi-cycle Simulation of a Gasoline Fueled HCCI Engine Operated with NVO

2009-04-20
2009-01-0130
A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations.
Technical Paper

A Dynamometer Study of Off-Cycle Exhaust Emissions - The Auto/Oil Air Quality Improvement Research Program

1997-05-01
971655
Four vehicle fleets, consisting of 3 to 4 vehicles each, were emission tested on a 48″ roll chassis dynamometer using both the FTP urban dynamometer driving cycle and the REP05 driving cycle. The REP05 cycle was developed to test vehicles under high speed and high load conditions not included in the FTP. The vehicle fleets consisted of 1989 light-duty gasoline vehicles, 1992-93 limited production FFV/VFV methanol vehicles, 1992-93 compressed natural gas (CNG) vehicles and their gasoline counterparts, and a 1992 production and two prototype ethanol FFV/VFV vehicles. All vehicles (except the dedicated CNG vehicles) were tested using Auto/Oil AQIRP fuels A and C2. Other fuels used were M85 blended from A and C2, E85 blended from C1, which is similar to C2 but without MTBE, and four CNG fuels representing the range of in-use CNG fuels. In addition to bag measurements, tailpipe exhaust concentration and A/F data were collected once per second throughout every test.
Technical Paper

A Feedback A/F Control System for Low Emission Vehicles

1993-03-01
930388
Recent Federal and California legislation have mandated major improvements in emission control. Tailpipe HC emission must be decreased an order of magnitude for the California Ultra Low Emission Vehicle (ULEV) standard. Present feedback A/F* control systems employ a Heated Exhaust Gas Oxygen sensor (HEGO sensor) upstream of the catalyst to perform A/F feedback control. Limitations on the ultimate accuracy of these switching sensors are well known. To overcome these limitations a linear Universal Exhaust Gas Oxygen sensor (UEGO sensor) placed downstream from the minicatalyst is employed to attain improved A/F control and therefore, higher three-way catalyst (TWC) conversion efficiency. This configuration was granted a patent in 1992 (1**). This study compares performance differences between the two feedback control systems on a Ford Mustang. In initial studies both the UEGO and HEGO sensors were compared at the midposition location downstream of a minicatalyst.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Technical Paper

A Linear Catalyst Temperature Sensor for Exhaust Gas Ignition (EGI) and On Board Diagnostics of Misfire and Catalyst Efficiency

1993-03-01
930938
Afterburning of a rich exhaust/air mixture ahead of the catalyst has been shown in earlier papers to offer an effective means of achieving catalyst light-off in very short times. Protection of the catalyst from overheating is an important aspect of systems using EGI, and on board diagnostics will be required to check for proper function of EGI. In this paper, some options for these requirements are discussed, using a high temperature linear thermistor.
Technical Paper

A Method for the Speciation of Diesel Fuel and the Semi-Volatile Hydrocarbon Fraction of Diesel-Fueled Vehicle Exhaust Emissions

1995-10-01
952353
Although much has been learned in recent years about the atmospheric reactivity of the hydrocarbon (HC) emissions from gasoline-fueled vehicles, there is only a limited database of corresponding information for exhaust emissions from diesel-fueled vehicles. An assessment of exhaust reactivity requires “speciation”, or measurement of the individual species of the HC fraction. The HC exhaust emissions are a complex mixture of unburned and partially burned fuel components. Because diesel fuel contains a much higher molecular weight range (typically C9-C26) than gasoline (typically C5-C12), new methodology was required to accommodate the collection and analysis of the >C12 fraction of the HC exhaust. As part of a study of the effects of fuel and other factors on the chemical nature of diesel emissions, we have developed a method for the collection and analysis of the semivolatile or heavy HC (>C12) fraction of the exhaust.
Technical Paper

A Method to Measure Air Conditioning Refrigerant Contributions to Vehicle Evaporative Emissions (SHED Test)

1999-05-03
1999-01-1539
Although the intent of the SHED test (Sealed Housing for Evaporative Determination) is to measure evaporative fuel losses, the SHED sampling methodology in fact measures hydrocarbons from all vehicle and test equipment sources. Leakage of air conditioning (AC) refrigerant is one possible non-fuel source contributing to the SHED hydrocarbon measurement. This report describes a quick and relatively simple method to identify the contribution of AC refrigerant to the SHED analyzer reading. R134A (CH2FCF3), the hydrofluorocarbon refrigerant used in all current automotive AC systems, as well as its predecessor, the chlorofluorocarbon R12, can be detected using the gas chromatography methods currently in place at many emissions labs for the speciation of exhaust and evaporative hydrocarbon emissions.
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Technical Paper

A Multinational Approach to European Environmental Concerns

1986-10-06
861588
European legislation covering noise, smoke emission and industrial pollution, all seeking to improve the environment are not addressed in this paper, which takes only exhaust emission and fuel complexity as its subjects. It describes how this complexity can inhibit the development capacity, thus restricting the model offering of a major european automobile manufacturer. The paper concludes that general benefit would be derived from genuine pan european emission legislation, particularly if that legislation was established at levels of control that allowed the development and use of modern engine technology.
Technical Paper

A New Mechanism for Measuring Exhaust A/F

1993-11-01
932957
Exhaust gas air-fuel ratio (A/F) sensors are common devices in powertrain feedback control systems aimed at minimizing emissions. Both resistive (using TiO2) and electrochemical (using ZrO2) mechanisms are used in the high temperature ceramic devices now being employed. In this work a new mechanism for making the measurement is presented based on the change in the workfunction of a Pt film in interaction with the exhaust gas. In particular it is found that the workfunction of Pt increases reversibly by approximately 0.7 V at that point (the stoichiometric ratio) where the exhaust changes from rich to lean conditions. This increase arises from the adsorption of O2 on the Pt surface. On returning to rich conditions, catalytic reaction of the adsorbed oxygen with reducing species returns the workfunction to its original value. Two methods, one capacitive and one thermionic, for electrically sensing this workfunction change and thus providing for a practical device are discussed.
Technical Paper

A New Technique for Measuring HC Concentration in Real Time, in a Running Engine

1988-02-01
880517
Using a novel, high frequency response FID unit, hydrocarbon measurements in the spark plug gap of a firing gasoline engine have been made. These measurements have been correlated with the pressure development, and a significant correlation was found. The method described can be used on any engine fitted with a modified sparking plug.
Technical Paper

A New Test for Catalyst Oxygen Storage Which Correlates with Catalyst Performance on the Vehicle

1994-10-01
942071
A new laboratory test for measuring catalyst oxygen storage capacity has been developed. The test accurately predicts catalyst performance on the vehicle during transient A/F excursions and correlates well with vehicle CO and Nox tailpipe emissions. The test was subsequently used to facilitate improved oxygen storage capacity for new Pd-only washcoat formulations.
Technical Paper

A Non-Intrusive Method of Measuring PCV Blowby Constituents

1994-10-01
941947
A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO2, NOx, O2, and H2O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO2, NOx, H2O(g), and fuel HCs in the engines' fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO2, NOx, and H2O(g).
X