Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Trajectories After Intersection Collision Impact

1970-02-01
700176
The postcollision motion starts immediately upon completion of a collision impact where the vehicles obtain new sets of velocities through an exchange of momentum. Similitude with model study and fullscale automobile experiments indicate that the post-collision trajectory is essentially a plane motion, governed by inertia and tire friction. Trajectories depend on many parameters (such as tire friction coefficient, front wheel steering angle, vehicle geometrics, and whether wheels are locked or free to rotate) but not on the vehicle weight. Theoretical computation of trajectories are compared with experiments.
Technical Paper

Variable Dynamic Testbed Vehicle: Dynamics Analysis

1997-02-24
970560
The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles. Using a selected compact-sized automobile as a baseline, our study indicated this baseline vehicle can be controlled to emulate the lateral response characteristics (including the vehicle's understeer coefficient and the 90% lateral acceleration rise time in a J-turn maneuver) of a fleet of production vehicles, from low to high lateral acceleration conditions.
Technical Paper

Using μ Feedforward for Vehicle Stability Enhancement

2000-05-01
2000-01-1634
Vehicle stability augmentation has been refined over many years, and currently there are commercial systems that control right/left braking and throttle to create vehicles that remain controlled when road conditions are very poor. These systems typically use yaw rate and lateral acceleration in their control philosophy. The tire/road friction coefficient, μ, has a significant role in vehicle longitudinal and lateral control, and there has been associated efforts to measure or estimate the road surface condition to provide additional information for the stability augmentation system. In this paper, a differential braking control strategy using yaw rate feedback, coupled with μ feedforward is introduced for a vehicle cornering on different μ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input.
Technical Paper

The Performance Effects of Edge-Based Heat Transfer on Lithium-Ion Pouch Cells Compared to Face-Based Systems

2014-04-01
2014-01-1866
Optimizing the hardware design and control strategies of thermal management systems (TMS) in battery packs using large format pouch cells is a difficult but important problem due to the limited understanding of how internal temperature distributions impact the performance and lifetime of the pack. Understanding these impacts is difficult due to the greatly varying length and time scales between the coupled phenomena, causing the need for complex and computationally expensive models. Here, an experimental investigation is performed in which a set of fixed one-dimensional temperature distributions are applied across the face of a Nickel-Cobalt-Manganese (NCM) cathode lithium ion pouch cell in order to study the performance impacts. Effects on the open circuit voltage (OCV), Ohmic resistance, bulk discharge and charge resistance and instantaneous power are investigated.
Technical Paper

Technical Findings from Automobile Impact Studies

1957-01-01
570011
AN engineering-oriented summary of the more significant technical findings derived from 12 automobile collision experiments conducted at impact speeds between 7 and 55 mph is presented here. Use of both human subjects and anthropometric dummy subjects facilitated procurement of critically needed data on human engineering aspects of collision injury minimization. An evaluation is made of four conditions of motorist restraint in terms of the force system applied to the motorist. Deceleration patterns, frame deformations, automobile impact analyses, and similar engineering data are given for several impact conditions. The instrumentation techniques for the collection of data in automobile collisions are briefly presented.
Technical Paper

Surface Acoustic Wave Microhygrometer

1997-07-01
972393
A microhygrometer has been developed at JPL's Microdevices Laboratory based on the principle of dewpoint/frostpoint detection. The surface acoustic wave device used in this instrument is approximately two orders of magnitude more sensitive to condensation than the optical sensor used in chilled-mirror hygrometers. In tests in the laboratory and on the NASA DC8, the SAW hygrometer has demonstrated more than an order of magnitude faster response than commercial chilled-mirror hygrometers, while showing comparable accuracy under steady-state conditions. Current development efforts are directed toward miniaturization and optimization of the microhygrometer electronics for flight validation experiments on a small radiosonde balloon.
Technical Paper

Simulating a Complete Performance Map of an Ethanol-Fueled Boosted HCCI Engine

2015-04-14
2015-01-0821
This paper follows a cycle-simulation method for creating an engine performance map for an ethanol fueled boosted HCCI engine using a 1-dimensional engine model. Based on experimentally determined limits, the study defined operating conditions for the engine and performed a limited parameter sweep to determine the best efficiency case for each condition. The map is created using a 6-Zone HCCI combustion model coupled with a detailed chemical kinetic reaction mechanism for ethanol, and validated against engine data collected from a 1.9L 4-Cylinder VW TDI engine modified to operate in HCCI mode. The engine was mapped between engine speeds of 900 and 3000 rpm, 1 and 3 bar intake pressure, and 0.2 and 0.4 equivalence ratio, resulting in loads between idle and 14.0 bar BMEP. Analysis of a number of trends for this specific engine map are presented, such as efficiency trends, effects of combustion phasing, intake temperature, engine load, engine speed, and operating strategy.
Technical Paper

ST-Lib: A Library for Specifying and Classifying Model Behaviors

2016-04-05
2016-01-0621
Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
Technical Paper

Requirements for a Flexible and Realistic Air Supply Model for Incorporation into a Fuel Cell Vehicle (FCV) System Simulation

1999-08-17
1999-01-2912
This paper addresses the critical need to incorporate realistic models of the air supply sub-system in fuel cell system performance analysis. The paper first presents the dominant performance issues involved with the air supply operation in the fuel cell system. The report then goes on to propose a methodology for an air supply model that addresses many of the performance issues. Most importantly, a model is needed with a defined set of performance criteria and data input format, one that can accommodate multiple air supply configurations, and one that realistically and accurately simulates the air supply operation and its effect on the system power and efficiency. The paper concludes that it is possible to compare alternative air supply components under the constraint of maximizing the instantaneous net fuel cell system efficiency for a dynamic vehicle driving cycle under various ambient conditions.
Journal Article

Regulated Emissions, Air Toxics, and Particle Emissions from SI-DI Light-Duty Vehicles Operating on Different Iso-Butanol and Ethanol Blends

2014-04-01
2014-01-1451
Gasoline direct injection (GDI) engines have improved thermodynamic efficiency (and thus lower fuel consumption) and power output compared with port fuel injection (PFI) and their penetration is expected to rapidly grow in the near future in the U.S. market. In addition, the use of alternative fuels is expanding, with a potential increase in ethanol content beyond the current 10%. Increased emphasis has been placed on butanol due to its more favorable fuel properties, as well as new developments in production processes. This study explores the influence of mid-level ethanol and iso-butanol blends on criteria emissions, gaseous air toxics, and particulate emissions from two wall-guided gasoline direct injection passenger cars fitted with three-way catalysts. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer.
Technical Paper

Regulated Emissions from Liquefied Petroleum Gas (LPG) Powered Vehicles

2014-04-01
2014-01-1455
Engine manufacturers have explored many routes to reducing the emissions of harmful pollutants and conserving energy resources, including development of after treatment systems to reduce the concentration of pollutants in the engine exhaust, using alternative fuels, and using alternative fuels with after treatment systems. Liquefied petroleum gas (LPG) is one alternative fuel in use and this paper will discuss emission measurements for several LPG vehicles. Regulated emissions were measured for five school buses, one box truck, and two small buses over a cold start Urban Dynamometer Driving Schedule (CS_UDDS), the Urban Dynamometer Driving Schedule (UDDS), and the Central Business District (CBD) cycle. In general, there were no significant differences in the gas phase emissions between the UDDS and the CBD test cycles. For the CS-UDDS cycle the total hydrocarbons and non-methane hydrocarbon emissions are higher than they are from the UDDS cycle.
Technical Paper

Reactive Regulation of Single-Lane Vehicle-Road Interactions

2014-04-01
2014-01-0390
This paper presents a driver assistance system designed to minimize the effect of driver reaction time on lane and speed maintenance operations. Nearly-instantaneous correcting actions are provided through a hierarchical arrangement of behaviors, by avoiding the time lag associated with deliberative or planning steps found in many control algorithms. Concepts originating in the field of robotics, including artificial potential fields and behavior-based systems, are interpreted for application to automotive control, where vehicle dynamics places considerable practical constraints on implementation. Ideas found in the study of emergent behavior in nature provide continuous, non-stepwise control signals, suitable for additive corrective inputs at highway velocities. This approach is effective for a substantial subset of road automobiles operating over a variety of speeds.
Technical Paper

Raison d'Être of Fuel Cells and Hydrogen Fuel for Automotive Powerplants

2004-03-08
2004-01-0788
The paper presents reportage of the debate on the topic expressed by its title that was held as a special session at the SAE 2003 Congress, supplemented by commentaries on its highlights. The debate brought to focus the fact that fuel cells are, indeed, superb powerplants for automobiles, while hydrogen is at the pinnacle of superiority as the most refined fuel. The problems that remained unresolved, are: (1) when fuel cells will be practically viable to replace internal combustion engines and (2) under what circumstances hydrogen, as the ultimate fuel, will be economically viable in view of its intrinsically high cost and hazards engendered by its extraordinary flammability and explosive tendency.
Technical Paper

Potential for Closed Loop Air-Fuel Ratio Management of a Diesel Engine

1999-03-01
1999-01-0517
The potential for improving the efficiency of a heavy duty turbocharged diesel engine by closed loop Air-Fuel Ratio (AFR) management has been evaluated. Testing conducted on a 12 liter diesel engine, and subsequent data evaluation, has established the feasibility of controlling the performance through electronic control of air management hardware. Furthermore, the feasibility of using direct in-cylinder pressure measurement for control feedback has been established. A compact and robust fiber optics sensor for measuring real time in-cylinder pressure has been demonstrated on a test engine. A preferred method for reducing the cylinder pressure data for control feedback has been established for continued development.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Physiological Effects of A Mechanical Counter Pressure Glove

2001-07-09
2001-01-2165
The first concept and early experiments of a Mechanical Counter Pressure (MCP) spacesuit were published by Webb in the late 1960’s. MCP provides an alternative approach to the conventional full pressure suit that bears some potential advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. Preliminary results are presented from glovebox testing with an existing MCP glove. The data indicates that properly applied mechanical counter pressure greatly reduces the effect of low-pressure exposure, which makes MCP a viable technology for spacesuit gloves.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Nonlinear Algorithms for Simultaneous Speed Tracking and Air-Fuel Ratio Control in an Automobile Engine

1999-03-01
1999-01-0547
Simultaneous control of speed and air-fuel ratio in a six-cylinder automobile engine is studied. A three-state engine model including rotational, air intake and fuel intake dynamics is used for control design. Control design focuses on application of nonlinear control techniques, specifically sliding mode control. Controllers are designed for tracking speed profiles and regulating air-fuel mixture. Multiple-surface sliding control is shown to result in good speed tracking in simulation and experiment. The production fuel controller and an observer-based sliding controller are shown to result in the best fuel control during speed transients. A standard sliding fuel controller is shown to result in high amplitude deviations due to oxygen sensor time delay. The best combination of controllers is shown to be the multiple-surface sliding speed controller and the observer-based fuel controller.
Technical Paper

Meeting Both ZEV and PNGV Goals with a Hybrid Electric Vehicle - An Exploration

1996-08-01
961718
This paper is written to provide information on the fuel efficiency, emissions and energy cost of vehicles ranging from a pure electric (ZEV) to gasoline hybrid vehicles with electric range varying from 30 mi (50km) to 100 mi (160km). The Federal government s PNGV and CARB s ZEV have different goals, this paper explores some possibilities for hybrid-electric vehicle designs to meet both goals with existing technologies and batteries. The SAE/CARB testing procedures for determining energy and emission performance for EV and HEV and CARB s HEV ruling for ZEV credit are also critically evaluated. This paper intends to clarify some confusion over the comparison, discussion and design of electric- hybrid- and conventional- vehicles as well.
Technical Paper

Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency – Is Hybridization Necessary?

1999-03-01
1999-01-0530
The question of whether or not direct-hydrogen fuel cell systems in automotive applications should be used in load following or load leveled (battery hybrid) configurations is addressed. Both qualitative and quantitative analyses are performed to determine the potential strengths and weaknesses of each option. It is determined that the amount of energy that can be recovered through regenerative braking has a strong impact on the relative fuel economy of load following versus load leveled operation. Further, it is demonstrated that driving cycles with lower power requirements will show an improvement in vehicle fuel economy from hybridization while those with higher power requirements will not. Finally it is acknowledged that the practical considerations of cost and volume must also weigh heavily into the decision between the two configurations.
X