Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Visualization of the Gas Flow Field within a Diesel Particulate Filter Using Magnetic Resonance Imaging

2015-09-01
2015-01-2009
In recent years magnetic resonance imaging (MRI) has been shown to be an attractive method for fluid flow visualization. In this work, we show how MRI velocimetry techniques can be used to non-invasively investigate and visualize the hydrodynamics of exhaust gas in a diesel particulate filter (DPF), both when clean and after loading with diesel engine exhaust particulate matter. The measurements have been used to directly measure the gas flow in the inlet and outlet channels of the DPF, both axial profiles along the length and profiles across the channel diameter. Further, from this information we show that it is possible to indirectly ascertain the superficial wall-flow gas velocity and the soot loading profiles along the filter channel length.
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Journal Article

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-03-28
2017-01-1319
A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
Technical Paper

The Fast FID as a Velocimeter for Flow Measurements in an Automotive Catalyst

1998-02-01
980879
The gas velocity through an automotive catalyst has been determined by measuring the time of flight of a pulse of propane injected at the inlet plane of the catalyst. The arrival time at the exit plane was detected by a fast flame ionization detector. By synchronizing and delaying the injection of propane with respect to the engine crankshaft position, the fluctuations of the exhaust gas velocity during the engine cycle were investigated. A number of tests at different engine load and speed points were carried out. The results show a complex velocity/time characteristic, including flow reversals. The technique is shown to be a viable option for flow measurement in this harsh environment.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Study of Steady State and Transient EGR Behaviour of a Medium Duty Diesel Engine

2008-10-06
2008-01-2438
It is well known that accurate EGR control is paramount to controlling engine out emissions during steady state and transient operation of a diesel engine. The direct measurement of EGR is however non-trivial and especially difficult in engines with no external EGR control where the intake manifold CO2 levels can be measured more readily. This work studies the EGR behaviour in a medium duty diesel engine with a passive EGR rebreathing strategy for steady state and transient operation. High speed (response time ∼1ms) in-cylinder sampling using modified GDI valves is coupled with high frequency response analysers to measure the cyclic in-cylinder CO2, from which the EGR rate is deduced. It was found that controlling the EGR using the passive rebreathing strategy during certain combined speed and load transients is challenging, causing high smoke and NO emissions.
Technical Paper

Study of Cycle-By-Cycle Air-to-Fuel Ratio Determined from the Exhaust Gas Composition and a Novel Fast Response Device Based on a Wide Band Lambda Sensor

2008-10-06
2008-01-2439
This paper describes cyclic Air/Fuel ratio (AFR) measurements carried out with a novel device (fUEGO) based on a production Universal Exhaust Gas Oxygen sensor, but modified to give an improved frequency response. The results are compared to AFR calculated from a fast CO/CO2 analyser and a fast response flame ionization detector (FID). The direct comparison of the two different methods for determining the cyclic AFR reveals that the electrochemical device is in reasonable agreement with the more complex carbon balance method and can provide reliable cyclic AFR measurements with a reduced requirement for equipment and data post processing. The fUEGO however is sensitive to elevated levels of uHC's (unburned hydrocarbons) during misfires or partial burns and readings during such situations usually show deviations compared to the carbon balance method.
Technical Paper

Stoichiometric Natural Gas Combustion in a Single Cylinder SI Engine and Impact of Charge Dilution by Means of EGR

2013-09-08
2013-24-0113
In this paper experimental results of a medium duty single cylinder research engine with spark ignition are presented. The engine was operated with stoichiometric natural gas combustion and additional charge dilution by means of external and cooled exhaust gas recirculation (EGR). The first part of this work considers the benefits of cooled EGR on thermo-mechanical stress of the engine including exhaust gas temperature, cylinder head temperature, and knock behaviour. This is followed by the analysis of the influence of cooled EGR on the heat release rate. In this context the impact of fuel gas composition is also under investigation. The influence of increasing EGR on fuel efficiency, which is caused by a changed combustion process due to higher fractions of inert gases, is shown in this section. By application of different pistons a relationship between the piston bowl geometry and the flame propagation has been demonstrated.
Technical Paper

Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions

2018-04-03
2018-01-0971
The use of twin-scroll turbocharger turbines has gained popularity in recent years. The main reason is its capability of isolating and preserving pulsating exhaust flow from engine cylinders of adjacent firing order, hence enabling more efficient pulse turbocharging. Asymmetrical twin-scroll turbines have been used to realize high pressure exhaust gas recirculation (EGR) using only one scroll while designing the other scroll for optimal scavenging. This research is based on a production asymmetrical turbocharger turbine designed for a heavy duty truck engine of Daimler AG. Even though there are number of studies on symmetrical twin entry scroll performance, a comprehensive modeling tool for asymmetrical twin-scroll turbines is yet to be found. This is particularly true for a meanline model, which is often used during the turbine preliminary design stage.
Technical Paper

Specifics of Daimler's new SCR system (BLUETEC) in the Diesel Sprinter Van - Certified for NAFTA 2010

2010-04-12
2010-01-1172
Beginning in 2010, Daimler's well-known Diesel Sprinter van has to fulfill the new and clearly tighter NOx emission standards of NAFTA10 (EPA, CARB). This requires an integrated approach of further engine optimizations and the implementation of an innovative exhaust aftertreatment technology. The goal was to develop an overall concept which meets simultaneously the tightened emission standards (including OBD limits) and the increasing customer demands of more power and torque without losing the high fuel efficiency of the small and highly efficient 3-liter V6 diesel engine OM642, which already has been installed in the NAFTA07 Sprinter. In the early stages of the concept phase, the most appropriate NOx aftertreatment technology and certification form (engine or vehicle) had to be selected for this specific vehicle class in the van segment with enhanced requirements to durability, economical efficiency and specific driving behavior.
Technical Paper

Spark Ignition Engine Simulation Using a Flamelet Based Combustion Model

2015-09-06
2015-24-2402
Three-dimensional Computational Fluid Dynamics (CFD) has become an integral part in analysing engine in-cylinder processes since it provides detailed information on the flow and combustion, which helps to find design improvements during the development of modern engine concepts. The predictive capability of simulation tools depends largely on the accuracy, fidelity and robustness of the various models used, in particular concerning turbulence and combustion. In this study, a flamelet model with a physics based closure for the progress variable dissipation rate is applied for the first time to a spark ignited IC engine. The predictive capabilities of the proposed approach are studied for one operating condition of a gasoline port fuel injected single-cylinder, four-stroke spark ignited full-metal engine running at 3,500 RPM close to full load (10 bar BMEP) at stoichiometric conditions.
Journal Article

Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach

2009-11-02
2009-01-2679
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Technical Paper

Simulating a Homogeneous Charge Compression Ignition Engine Fuelled with a DEE/EtOH Blend

2006-04-03
2006-01-1362
We numerically simulate a Homogeneous Charge Compression Ignition (HCCI) engine fuelled with a blend of ethanol and diethyl ether by means of a stochastic reactor model (SRM). A 1D CFD code is employed to calculate gas flow through the engine, whilst the SRM accounts for combustion and convective heat transfer. The results of our simulations are compared to experimental measurements obtained using a Caterpillar CAT3401 single-cylinder Diesel engine modified for HCCI operation. We consider emissions of CO, CO2 and unburnt hydrocarbons as functions of the crank angle at 50% heat release. In addition, we establish the dependence of ignition timing, combustion duration, and emissions on the mixture ratio of the two fuel components. Good qualitative agreement is found between our computations and the available experimental data.
Technical Paper

Sensitivity of Flamelet Combustion Model to Flame Curvature for IC Engine Application

2017-09-04
2017-24-0038
Engines with reduced emissions and improved efficiency are of high interest for road transport. However, achieving these two goals is challenging and various concepts such as PFI/DI/HCCI/PCCI are explored by engine manufacturers. The computational fluid dynamics is becoming an integral part of modern engine development programme because this method provides access to in-cylinder flow and thermo-chemical processes to develop a closer understanding to tailor tumble and swirling motions to construct green engines. The combustion modelling, its accuracy and robustness play a vital role in this. Out of many modelling methods proposed in the past flamelet based methods are quite attractive for SI engine application. In this study, FlaRe (Flamelets revised for physical consistencies) approach is used to simulate premixed combustion inside a gasoline PFI single-cylinder, four-stroke SI engine. This approach includes a parameter representing the effects of flame curvature on the burning rate.
Technical Paper

Residual Gas Fraction Measurement and Estimation on a Homogeneous Charge Compression Ignition Engine Utilizing the Negative Valve Overlap Strategy

2006-10-16
2006-01-3276
This paper is concerned with the Residual Gas Fraction measurement and estimation on a Homogeneous Charge Compression Ignition (HCCI) engine. A novel in-cylinder gas sampling technique was employed to obtain cyclic dynamic measurements of CO2 concentration in the compression stroke and in combination with CO2 concentration measurements in the exhaust stroke, cyclic Residual Gas Fraction was measured. The measurements were compared to estimations from a physical, 4-cylinder, single-zone model of the HCCI cycle and good agreement was found in steady engine running conditions. Some form of oscillating behaviour that HCCI exhibits because of exhaust gas coupling was studied and the model was modified to simulate this behaviour.
Technical Paper

Premixed Turbulent Combustion Flowfield Measurements Using PIV and LST and Their Application to Flamelet Modelling of Engine Combustion

1992-10-01
922322
Flamelet modelling of premixed turbulent combustion can be applied to spark-ignition engine combustion. To address and validate several modelling criteria, two measurement techniques are used in a burner flame to study the interaction between turbulent flowfields and combustion for subsequent application to engine combustion. Particle Image Velocimetry and Light Sheet Tomography are used together to measure conditional velocities simultaneously in reactant and product mixtures. Correlations of velocity and reaction scalar fluctuations indicate that counter-gradient turbulent diffusion must be accounted for when modelling this flowfield. Comparisons of spatial averaging of instantaneous and ensemble-averaged data are made and the application of similar techniques to engine combustion is discussed.
Technical Paper

Prediction of Wheel Forces and Moments and Their Influence to the Interior Noise

2016-06-15
2016-01-1834
This paper describes the prediction process of wheel forces and moments via indirect transfer path analysis, followed by an analysis of the influence of wheel variants and suspension modifications. It proposes a method to calculate transmission of noise to the vehicle interior where wheel forces and especially moments were taken into account. The calculation is based on an indirect transfer path analysis with geometrical modifications of the frequency response functions. To generate high quality broadband results, this paper also points out some of the main clearance cutting criteria. The method has been successfully implemented to show the influence of wheel tire combinations as well as the influence of suspension modifications. Case studies have been performed and will be presented in this paper. Operational noise and vibration measurements have been carried out on Daimler NVH test tracks. The frequency response functions were estimated in an acoustic laboratory.
Journal Article

Predicted Roughness Perception for Simulated Vehicle Interior Noise

2012-06-13
2012-01-1561
In the past the exterior and interior noise level of vehicles has been largely reduced to follow stricter legislation and due to the demand of the customers. As a consequence, the noise quality and no longer the noise level inside the vehicle plays a crucial role. For an economic development of new powertrains it is important to assess noise quality already in early development stages by the use of simulation. Recent progress in NVH simulation methods of powertrain and vehicle in time and frequency domain provides the basis to pre-calculated sound pressure signals at arbitrary positions in the car interior. Advanced simulation tools for elastic multi-body simulation and novel strategies to measure acoustical transfer paths are combined to achieve this goal. In order to evaluate the obtained sound impression a roughness prediction model has been developed. The proposed roughness model is a continuation of the model published by Hoeldrich and Pflueger.
X