Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

VRA Flight Experiment Sample Stability Study

1997-07-01
972377
Design concepts for the International Space Station Water Processor (WP) will be validated as discrete flight experiments on-board the Space Shuttle Spacehab. This paper summarizes the results of a study into sample stability within a modified Teflon cell culture bag assembly to support an upcoming Spacehab evaluation of the WP Volatile Removal Assembly (VRA). Results indicate that a lack of adequate preservation results in significant sample analyte degradation over the course of 2-3 week due to increased microbial activity. Results were utilized for the definition of an optimal preservation approach based on the anticipated VRA Flight Experiment samples.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems

2004-07-19
2004-01-2477
This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.
Technical Paper

A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

2009-07-12
2009-01-2537
In the design of a new space suit it is necessary to have requirements that define what mobility space suit joints should be capable of achieving in both a system and at the component level. NASA elected to divide mobility into its constituent parts -- range of motion (ROM) and torque -- in an effort to develop clean design requirements that limit subject performance bias and are easily verified. Unfortunately, the measurement of mobility can be difficult to obtain. Current technologies, such as the Vicon motion capture system, allow for the relatively easy benchmarking of range of motion (ROM) for a wide array of space suit systems. The ROM evaluations require subjects in the suit to accurately evaluate the ranges humans can achieve in the suit. However, when it comes to torque, there are significant challenges for both benchmarking current performance and writing requirements for future suits.
X